PAPER - 3: COST AND MANAGEMENT ACCOUNTING

Question No. 1 is compulsory.
Attempt any four questions out of the remaining five questions.
In case, any candidate answers extra question(s)/ sub-question(s) over and above the required number, then only the requisite number of questions first answered in the answer book shall be valued and subsequent extra question(s) answered shall be ignored.

Working notes should form part of the answer

Question 1

Answer the following:
(a) During a particular period ABC Ltd has furnished the following data:

Sales ₹ $10,00,000$
Contribution to sales ratio 37% and
Margin of safety is 25% of sales.
A decrease in selling price and decrease in the fixed cost could change the "contribution to sales ratio" to 30% and "margin of safety" to 40% of the revised sales. Calculate:
(i) Revised Fixed Cost.
(ii) Revised Sales and
(iii) New Break-Even Point.
(b) A machine shop has 8 identical machines manned by 6 operators. The machine cannot work without an operator wholly engaged on it. The original cost of all the 8 machines works out to ₹ $32,00,000$. The following particulars are furnished for a six months period:
Normal available hours per month per operator 208
Absenteeism (without pay) hours per operator 18
Leave (with pay) hours per operator 20
Normal unavoidable idle time-hours per operator 10
Average rate of wages per day of 8 hours per operator ₹ 100
Production bonus estimated 10\% on wages
Power consumed ₹ 40,250
Supervision and Indirect Labour ₹ 16,500
Lighting and Electricity ₹6,000

The following particulars are given for a year:
Insurance
₹ $3,60,000$
Sundry work Expenses
₹ 50,000
Management Expenses allocated ₹ $5,00,000$

Depreciation 10% on the original cost
Repairs and Maintenance (including consumables): 5\% of the value of all the machines.
Prepare a statement showing the comprehensive machine hour rate for the machine shop.
(c) MNO Ltd has provided following details:

- Opening work in progress is 10,000 units at ₹ 50,000 (Material 100\%, Labour and overheads 70% complete).
- Input of materials is 55,000 units at ₹ $2,20,000$. Amount spent on Labour and Overheads is ₹ 26,500 and $₹ 61,500$ respectively.
- 9,500 units were scrapped; degree of completion for material 100% and for labour \& overheads 60\%.
- Closing work in progress is 12,000 units; degree of completion for material 100% and for labour \& overheads 90%.
- Finished units transferred to next process are 43,500 units.

Normal loss is 5% of total input including opening work in progress. Scrapped units would fetch ₹ 8.50 per unit.
You are required to prepare using FIFO method:
(i) Statement of Equivalent production
(ii) Abnormal Loss Account
(d) GHI Ltd. manufactures 'Stent' that is used by hospitals in heart surgery. As per the estimates provided by Pharmaceutical Industry Bureau, there will be a demand of 40 Million 'Stents' in the coming year. GHI Ltd. is expected to have a market share of 2.5\% of the total market demand of the Stents in the coming year. It is estimated that it costs $₹ 1.50$ as inventory holding cost per stent per month and that the set-up cost per run of stent manufacture is ₹ 225 .
Required:
(i) What would be the optimum run size for Stent manufacture?
(ii) What is the minimum inventory holding cost?
(iii) Assuming that the company has a policy of manufacturing 4,000 stents per run, how much extra costs the company would be incurring as compared to the optimum run suggested in (i) above?

Answer

(a) Contribution to sales ratio (P/V ratio) $=37 \%$
Variable cost ratio

$$
=100 \%-37 \% \quad=63 \%
$$

Variable cost = ₹ $10,00,000 \times 63 \%=$ ₹ $6,30,000$

After decrease in selling price and fixed cost, sales quantity has not changed. Thus, variable cost is ₹ $6,30,000$.
Revised Contribution to sales $=30 \%$
Thus, Variable cost ratio
$=100 \%-30 \%=70 \%$
Thus, Revised sales
$=\frac{₹ 6,30,000}{70 \%}=₹ 9,00,000$
Revised, Break-even sales ratio
$=100 \%-40 \%$ (revised Margin of safety) $=60 \%$
(i) Revised fixed cost
$=$ revised breakeven sales x revised contribution to sales ratio
= ₹ $5,40,000$ ($₹ 9,00,000 \times 60 \%$) $\times 30 \%$
= ₹ $1,62,000$
(ii) Revised sales
= ₹ $9,00,000$ (as calculated above)
(iii) Revised Break-even point
= Revised sales \times Revised break-even sales ratio
= ₹ $9,00,000 \times 60 \%$
= ₹ $5,40,000$
(b) Workings:

Particulars	Six months 6 operators (Hours)
Normal available hours per month (208 $\times 6$ months $\times 6$	7,488
operators)	(108)
Less: Absenteeism hours (18×6 operators)	7,380
Paid hours (A)	(120)
Less: Leave hours (20 $\times 6$ operators)	(60)
Less: Normal idle time (10 $\times 6$ operators)	$\mathbf{7 , 2 0 0}$
Effective working hours	

Computation of Comprehensive Machine Hour Rate

Particulars	Amount for six months (₹)
Operators' wages (7,380/8 x100)	92,250
Production bonus (10\% on wages)	9,225
Power consumed	40,250
Supervision and indirect labour	16,500
Lighting and Electricity	6,000
Repair and maintenance $\{(5 \% \times ₹ 32,00,000) / 2\}$	80,000
Insurance (₹ $3,60,000 / 2)$	$1,80,000$
Depreciation $\{(₹ 32,00,000 \times 10 \%) / 2\}$	$1,60,000$
Sundry Work expenses (₹ $50,000 / 2)$	25,000
Management expenses (₹ $5,00,000 / 2)$	$2,50,000$
Total Overheads for 6 months	$\mathbf{8 , 5 9 , 2 2 5}$
Comprehensive Machine Hour Rate $=₹ \mathbf{8 , 5 9 , 2 2 5 / 7 , 2 0 0}$ hours	$₹ \mathbf{1 1 9 . 3 3}$

(Note: Machine hour rate may be calculated alternatively. Further, presentation of figures may also be done on monthly or annual basis.)
(c) (i) Statement of Equivalent Production (Using FIFO method)

Particulars	Input Units	Particulars	Output Units	Equivalent Production			
				Material		Labour \& O.H.	
				\%	Units	\%	Units
Opening WIP	10,000	Completed and transferred to Process-II					
Units introduced	55,000	- From opening WIP - From fresh inputs	$\begin{aligned} & 10,000 \\ & 33,500 \end{aligned}$	100	33,500	30 100	$\begin{aligned} & 3,000 \\ & 33,500 \end{aligned}$
			43,500		33,500		36,500
		Normal Loss $\{5 \%$ (10,000 + 55,000 units) \}	3,250	-			
		Abnormal loss $(9,500-3,250)$	6,250	100	6,250	60	3,750

	Closing WIP	12,000	100	12,000		90	10,800
	$\mathbf{6 5 , 0 0 0}$		$\mathbf{6 5 , 0 0 0}$		$\mathbf{5 1 , 7 5 0}$		$\mathbf{5 1 , 0 5 0}$

(ii)

Abnormal Loss A/c

Particulars	Units	(₹)	Particulars	Units	(₹)
To Process-I A/c (Refer Working Note-2)	6,250	29,698	By Cost Ledger Control A/c $(6,250$ units \times ₹ 8.5)	6,250	53,125
To Costing Profit \& Loss A/c	-	23,427			
	$\mathbf{6 , 2 5 0}$	$\mathbf{5 3 , 1 2 5}$		6,250	$\mathbf{5 3 , 1 2 5}$

Working Notes:

1.

Computation of Cost per unit

Particulars	Materials $(₹)$	Labour $(₹)$	Overhead $(₹)$
Input costs	$2,20,000$	26,500	61,500
Less: Realisable value of normal	$(27,625)$	--	--
\quadscrap $(3,250$ units $\times ₹ 8.5)$			
Net cost	$1,92,375$	26,500	61,500
Equivalent Units	51,750	51,050	51,050
Cost Per Unit	$\mathbf{3 . 7 1 7 4}$	$\mathbf{0 . 5 1 9 1}$	$\mathbf{1 . 2 0 4 7}$

Total cost per unit $=₹(3.7174+0.5191+1.2047)=₹ 5.4412$
2.

Valuation of Abnormal Loss

	(₹)
Materials (6,250 units $\times ₹ 3.7174$)	$23,233.75$
Labour (3,750 units \times ₹ 0.5191)	$1,946.63$
Overheads (3,750 units \times ₹ 1.2047)	$4,517.62$
	$\mathbf{2 9 , 6 9 8}$

(d) (i) Computation of Optimum Run size of 'Stents' or Economic Batch Quantity (EBQ)

Economic Batch Quantity (EBQ) $=\sqrt{\frac{2 D S}{C}}$

$$
\begin{aligned}
\text { Where, } \quad \begin{aligned}
\mathrm{D} & =\text { Annual demand for the Stents } \\
& =4,00,00,000 \times 2.5 \%=10,00,000 \text { units } \\
\text { S } & =\text { Set- up cost per run } \\
& =₹ 225 \\
\text { C } & =\text { Carrying cost per unit per annum } \\
& =₹ 1.50 \times 12=₹ 18 \\
\text { EBQ } & =\sqrt{\frac{2 \times 10,00,000 \times ₹ 225}{₹ 18}} \\
& =5,000 \text { units of Stents }
\end{aligned}
\end{aligned}
$$

(ii) Minimum inventory holding cost

Minimum Inventory Cost $=$ Average Inventory \times Inventory Carrying Cost per unit per annum

$$
\begin{aligned}
& =(5,000 \div 2) \times ₹ 18 \\
& =₹ 45,000
\end{aligned}
$$

(iii) Calculation of the extra cost due to manufacturing policy

	When run size is 4,000 units	When run size is 5,000 units i.e. at EBQ
Total set up cost	$\begin{gathered} =\frac{10,00,000}{4,000} \times ₹ 225 \\ \quad=₹ 56,250 \end{gathered}$	$\begin{aligned} & \frac{10,00,000}{5,000} \times ₹ 225 \\ & \quad=₹ 45,000 \end{aligned}$
Total Carrying cost	$\begin{gathered} 1 / 2 \times 4,000 \times ₹ 18 \\ =₹ 36,000 \end{gathered}$	$\begin{gathered} 1 / 2 \times 5,000 \times ₹ 18 \\ =₹ 45,000 \end{gathered}$
Total Cost	₹ 92,250	₹ 90,000

Extra cost= ₹ $92,250-₹ 90,000=₹ 2,250$

Question 2

(a) Z Ltd is working by employing 50 skilled workers. It is considering the introduction of an incentive scheme - either Halsey Scheme (with 50% Bonus) or Rowan Scheme - of wage payment for increasing the labour productivity to adjust with the increasing demand for its products by 40%. The company feels that if the proposed incentive scheme could bring about an average 20% increase over the present earnings of the workers, it could act as sufficient incentive for them to produce more and the company has accordingly given assurance to the workers.

Because of this assurance, an increase in productivity has been observed as revealed by the figures for the month of April, 2020:

Hourly rate of wages (guaranteed)	$₹ 50$
Average time for producing one unit by one worker at the previous	
performance (this may be taken as time allowed)	1.975 hours
Number of working days in a month	24
Number of working hours per day of each worker	8
Actual production during the month	6,120 units

Required:
(i) Calculate the effective increase in earnings of workers in percentage terms under Halsey and Rowan scheme.
(ii) Calculate the savings to Z Ltd in terms of direct labour cost per unit under both the schemes.
(iii) Advise Z Ltd about the selection of the scheme that would fulfil its assurance of incentivising workers and also to adjust with the increase in demand.
(10 Marks)
(b) The following data are available from the books and records of Q Ltd. for the month of April 2020:
Direct Labour Cost $=₹ 1,20,000$ (120\% of Factory Overheads)
Cost of Sales $\quad=₹ 4,00,000$
Sales $\quad=₹ 5,00,000$
Accounts show the following figures:

	$1^{\text {st }}$ April, 2020 ($)^{\prime}$	30th April, 2020 (₹)
Inventory:		
Raw material	20,000	25,000
Work-in-progress	20,000	30,000
Finished goods	50,000	60,000
Other details:		
Selling expenses		22,000
General \& Admin. expenses		18,000

You are required to prepare a cost sheet for the month of April 2020 showing:
(i) Prime Cost
(ii) Works Cost
(iii) Cost of Production
(iv) Cost of Goods sold
(v) Cost of Sales and Profit earned.
(10 Marks)

Answer

(a) Working Notes:

1. Total time wages of 50 workers per month:
$=$ No. of working days in the month \times No. of working hours per day of each worker \times Hourly rate of wages \times No. of workers
$=24$ days $\times 8$ hrs. $\times ₹ 50 \times 50$ workers $=₹ 4,80,000$
2. Time saved per month:

Time allowed per unit to a worker 1.975 hours
No. of units produced during the month by 50 workers $\quad 6,120$ units
Total time allowed to produce 6,120 units ($6,120 \times 1.975 \mathrm{hrs}$) $\quad 12,087$ hours
Actual time taken to produce 6,120 units (24 days $\times 8$ hrs. $\times 50$ workers) 9,600 hours
Time saved (12,087 hours $-9,600$ hours) $\quad 2,487$ hours
3. Bonus under Halsey scheme to be paid to 50 workers:

Bonus $=(50 \%$ of time saved) \times hourly rate of wages

$$
=50 / 100 \times 2,487 \text { hours } \times ₹ 50=₹ 62,175
$$

Total wages to be paid to 50 workers are ($₹ 4,80,000+₹ 62,175$) ₹ $5,42,175$, if Z Ltd. considers the introduction of Halsey Incentive Scheme to increase the worker productivity.
4. Bonus under Rowan Scheme to be paid to 50 workers:

$$
\begin{aligned}
\text { Bonus } & =\frac{\text { Time taken }}{\text { Time allowed }} \times \text { Time saved } \times \text { hourly rate } \\
& =\frac{9,600 \text { hours }}{12,087 \text { hours }} \times 2,487 \text { hours } \times ₹ 50=₹ 98,764
\end{aligned}
$$

Total wages to be paid to 50 workers are ($₹ 4,80,000+₹ 98,764$) ₹ $5,78,764$, if Z Ltd. considers the introduction of Rowan Incentive Scheme to increase the worker productivity.
(i) (a) Effective hourly rate of earnings under Halsey scheme:
(Refer to Working Notes 1, 2 and 3)
$=\frac{\text { Total time wages of } 50 \text { workers }+ \text { Total bonus under Halsey scheme }}{\text { Total hours worked }}$
$=\frac{₹ 4,80,000+₹ 62,175}{9,600 \text { hours }}=₹ 56.48$
Effective increase in earnings of worker (in $\%$) $=\frac{₹ 56.48-₹ 50}{₹ 50} \times 100=2.96 \%$
(b) Effective hourly rate of earnings under Rowan scheme:
(Refer to Working Notes 1, 2 and 4)
$=\frac{\text { Total time wages of } 50 \text { workers }+ \text { Total bonus under Rowan scheme }}{\text { Total hours worked }}$
$=\frac{₹ 4,80,000+₹ 96,875}{9,600 \text { hours }}=₹ 60.29$
Effective increase in earnings of worker (in \%) $=\frac{₹ 60.29-₹ 50}{₹ 50} \times 100=\mathbf{2 0 . 5 8 \%}$
(ii) (a) Saving in terms of direct labour cost per unit under Halsey scheme:
(Refer to Working Note 3)
Labour cost per unit (under time wage scheme)
$=1.975$ hours \times ₹ $50=₹ 98.75$
Labour cost per unit (under Halsey scheme)
$=\frac{\text { Total wages paid under the schem }}{\text { Total number of units produced }}=\frac{₹ 5,42,175}{6,120}=s ₹ 88.60$
Saving per unit $=₹ 98.75-₹ 88.60=₹ 10.15$
(b) Saving in terms of direct worker cost per unit under Rowan Scheme:
(Refer to Working Note 4)
Labour cost per unit under Rowan scheme $=₹ 5,78,764 / 6,120$ units= $₹ 94.57$
Saving per unit = ₹ 98.75 - ₹ $94.57=$ ₹ 4.18
(iii) Calculation of Productivity:

Normal Production Hours worked/Unit per Hour (9,600/1.975)	4,861
Actual Production Units	6,120
Increase in labour productivity	1,259
\% Productivity i.e. increase in production/Normal production	$\mathbf{2 5 . 9 \%}$

Advice: Rowan plan fulfils the company's assurance of 20% increase over the present earnings of workers. This would increase productivity by 25.9% only. It will not adjust with the increase in demand by 40%.
(b) Cost Sheet for the Month of April 2020

Particulars	$\mathbf{(₹)}$
Opening stock of Raw Material	20,000
Add: Purchases [Refer Working Note-2]	$1,65,000$
Less: Closing stock of Raw Material	$(25,000)$
Raw material consumed	$1,60,000$
Add: Direct labour cost	$1,20,000$
Prime cost	$2,80,000$
Add: Factory overheads	$1,00,000$
Gross Works cost	$3,80,000$
Add: Opening work-in-progress	20,000
Less: Closing work-in-progress	$(30,000)$
Works Cost	$3,70,000$
Cost of Production	$3,70,000$
Add: Opening stock of finished goods	50,000
Less: Closing stock of finished goods	$(60,000)$
Cost of goods sold	$3,60,000$
Add: General and administration expenses*	18,000
Add: Selling expenses	22,000
Cost of sales	$4,00,000$
Profit \{Balancing figure (₹ $5,00,000-₹ 4,00,000)\}$	$1,00,000$
Sales	$5,00,000$

*General and administration expenses have been assumed as not relating to the production activity.

Working Note:

1.

Computation of the raw material consumed

Particulars	(₹)
Cost of Sales	$4,00,000$
Less: General and administration expenses	$(18,000)$
Less: Selling expenses	$(22,000)$
Cost of goods sold	$3,60,000$
Add: Closing stock of finished goods	60,000
Less: Opening stock of finished goods	$(50,000)$
Cost of production/Gross works cost	$3,70,000$
Add: Closing stock of work-in-progress	30,000
Less: Opening stock of work-in-progress	$(20,000)$
Works cost	$3,80,000$
Less: Factory overheads $\left(\frac{₹ 1,20,000}{120} \times 100\right)$	
	$(1,00,000)$
Prime cost	$2,80,000$
Less: Direct labour	$(1,20,000)$
Raw material consumed	$1,60,000$

2.

Computation of the raw material purchased

Particulars	(₹)
Closing stock of Raw Material	25,000
Add: Raw Material consumed	$1,60,000$
Less: Opening stock of Raw Material	$(20,000)$
Raw Material purchased	$1,65,000$

Question 3

(a) Two manufacturing companies A and B are planning to merge. The details are as follows:

	A	B
Capacity utilisation (\%)	90	60
Sales (₹)	$63,00,000$	$48,00,000$
Variable Cost (₹)	$39,60,000$	$22,50,000$
Fixed Cost (₹)	$13,00,000$	$15,00,000$

Assuming that the proposal is implemented, calculate:
(i) Break-Even sales of the merged plant and the capacity utilization at that stage.
(ii) Profitability of the merged plant at 80% capacity utilization.
(iii) Sales Turnover of the merged plant to earn a profit of $₹ 60,00,000$.
(iv) When the merged plant is working at a capacity to earn a profit of ₹ $60,00,000$, what percentage of increase in selling price is required to sustain an increase of 5% in fixed overheads.
(10 Marks)
(b) XYZ Ltd. is engaged in the manufacturing of toys. It can produce 4,20,000 toys at its 70\% capacity on per annum basis. Company is in the process of determining sales price for the financial year 2020-21. It has provided the following information:

Direct Material	$₹ 60$ per unit
Direct Labour	$₹ 30$ per unit

Indirect Overheads:
Fixed \quad ₹ $65,50,000$ per annum
Variable ₹15 per unit
Semi-variable ₹ $5,00,000$ per annum up to 60% capacity and ₹ 50,000 for every 5% increase in capacity or part thereof up to 80% capacity and thereafter ₹ 75,000 for every 10% increase in capacity or part thereof.

Company desires to earn a profit of ₹ $25,00,000$ for the year. Company has planned that the factory will operate at 50% of capacity for first six months of the year and at 75% of capacity for further three months and for the balance three months, factory will operate at full capacity.

You are required to :
(1) Determine the average selling price at which each of the toy should be sold to earn the desired profit.
(2) Given the above scenario, advise whether company should accept an offer to sell each Toy at:
(a) ₹ 130 per Toy
(b) ₹ 129 per Toy
(10 Marks)

Answer

(a) Workings:

1. Statement showing computation of Breakeven of merged plant and other required information

S. No.	Particulars	Plan A		Plant B		Merged
		Before (90%) $(₹)$	After (100%) $(₹)$	Before (60%) $(₹)$	After (100%) $(₹)$	Plant (100%) $(₹)$
(i)	Sales	$63,00,000$	$70,00,000$	$48,00,000$	$80,00,000$	$1,50,00,000$
(ii)	Variable cost	$39,60,000$	$44,00,000$	$22,50,000$	$37,50,000$	$81,50,000$
(iii)	Contribution (i - ii)	$23,40,000$	$26,00,000$	$25,50,000$	$42,50,000$	$68,50,000$
(iv)	Fixed Cost	$13,00,000$	$13,00,000$	$15,00,000$	$15,00,000$	$28,00,000$
(v)	Profit (iii - iv)	$10,40,000$	$13,00,000$	$10,50,000$	$27,50,000$	$40,50,000$

2. PV ratio of merged plant $=\frac{\text { Contribution }}{\text { Sales }} \times 100$

$$
=\frac{₹ 68,50,000}{₹ 1,50,00,000} \times 100=45.67 \%
$$

(i) Break even sales of merged plant $=\frac{\text { Fixed Cost }}{\text { PN Ratio }}$

$$
\begin{aligned}
& =\frac{₹ 28,00,000}{45.67 \%} \\
& =₹ 61,30,939.34 \text { (approx.) }
\end{aligned}
$$

Capacity utilisation

$$
=\frac{₹ 61,30,939.34}{₹ 1,50,00,000} \times 100=40.88 \%
$$

(ii) Profitability of the merged plant at 80% capacity utilisation
$=(₹ 1,50,00,000 \times 80 \%) \times$ P/v ratio - fixed cost
= ₹ $1,20,00,000 \times 45.67 \%$ - ₹ $28,00,000$
= ₹ $26,80,400$
(iii) Sales to earn a profit of ₹ $60,00,000$

Desired sales $=\frac{\text { Fixed Cost }+ \text { desired profit }}{\text { PN Ratio }}$

$$
=\frac{₹ 28,00,000+₹ 60,00,000}{45.67 \%}
$$

= ₹ 1,92,68,666 (approx.)
(iv) Increase in fixed cost

$$
\text { = ₹ } 28,00,000 \times 5 \%=₹ 1,40,000
$$

Therefore, percentage increase in sales price

$$
=\frac{₹ 1,40,000}{₹ 1,92,68,666} \times 100=0.726 \% \text { (approx.) }
$$

(b) (1) Statement of Cost

	For first 6 months	For further 3 months	For remaining 3 months	Total
	$\begin{aligned} & 6,00,000 \times \\ & 6 / 12 \times 50 \% \end{aligned}$	$\begin{aligned} & 6,00,000 \times \\ & 3 / 12 \times 75 \% \end{aligned}$	$\begin{gathered} 6,00,000 \mathrm{x} \\ 3 / 12 \end{gathered}$	
	$\begin{gathered} =1,50,000 \\ \text { units } \end{gathered}$	$\begin{gathered} =\begin{array}{c} 1,12,500 \\ \text { units } \end{array} \\ \hline \end{gathered}$	$\begin{gathered} =1,50,000 \\ \text { units } \end{gathered}$	$\begin{gathered} 4,12,500 \\ \text { units } \end{gathered}$
Direct Material	90,00,000	67,50,000	90,00,000	2,47,50,000
Direct labour	45,00,000	33,75,000	45,00,000	1,23,75,000
Indirect - Variable Expenses	22,50,000	16,87,500	22,50,000	61,87,500
Indirect - Fixed Expenses	32,75,000	16,37,500	16,37,500	65,50,000
Indirect expenses Semi-variable				
- For first six months @ 5,00,000 per annum	2,50,000			
- For further three months @ 6,50,000* per annum		1,62,500		
- For further three months @ 8,50,000** per annum			2,12,500	6,25,000
Total Cost	1,92,75,000	1,36,12,500	1,76,00,000	5,04,87,500
Desired Profit				25,00,000
Sales value				5,29,87,500
Average Sales price per Toy				128.45

[^0](2) (a) Company Should accept the offer as it is above its targeted sales price of ₹ 128.45 per toy.
(b) Company Should accept the offer as it is above its targeted sales price of ₹ 128.45 per toy.

Question 4

(a) Mayura Chemicals Ltd buys a particular raw material at ₹ 8 per litre. At the end of the processing in Department- I, this raw material splits-off into products X, Y and Z. Product X is sold at the split-off point, with no further processing. Products Y and Z require further processing before they can be sold. Product Y is processed in Department-2, and Product Z is processed in Department-3. Following is a summary of the costs and other related data for the year 2019-20:

Particulars	Department		
	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
Cost of Raw Material	$₹ 4,80,000$	-	-
Direct Labour	$₹ 70,000$	$₹ 4,50,000$	$₹ 6,50,000$
Manufacturing Overhead	$₹ 48,000$	$₹ 2,10,000$	$₹ 4,50,000$
	Products		
	\boldsymbol{X}	\boldsymbol{Y}	\mathbf{Z}
Sales (litres)	10,000	15,000	22,500
Closing inventory (litres)	5,000	-	7,500
Sale price per litre (₹)	30	64	50

There were no opening and closing inventories of basic raw materials at the beginning as well as at the end of the year. All finished goods inventory in litres was complete as to processing. The company uses the Net-realisable value method of allocating joint costs.
You are required to prepare:
(i) Schedule showing the allocation of joint costs.
(ii) Calculate the Cost of goods sold of each product and the cost of each item in Inventory.
(iii) A comparative statement of Gross profit.
(10 Marks)
(b) ABC Ltd. manufactures three products X, Y and Z using the same plant and resources. It has given the following information for the year ended on $31^{\text {st }}$ March, 2020:

	X	Y	Z
Production Quantity (units) Cost per unit:	1200	1440	1968

Direct Material (₹)	90	84	176
Direct Labour ($)$	18	20	30

Budgeted direct labour rate was ₹ 4 per hour and the production overheads, shown in table below, were absorbed to products using direct labour hour rate. Company followed Absorption Costing Method. However, the company is now considering adopting Activity Based Costing Method.

	Budgeted Overheads (₹)	Cost Driver	Remarks
Material Procurement	50,000	No. of orders	No. of orders was 25 units for each product.
Set-up	40,000	No. of production Runs	All the three products are produced in production runs of 48 units.
Quality Control	28,240	No. of Inspections	Done for each production run.
Maintenance	$1,28,000$	Maintenance hours	Total maintenance hours were 6,400 and was allocated in the ratio of 1:1:2 between $X, Y \& Z$.

Required:

1. Calculate the total cost per unit of each product using the Absorption Costing Method.
2. Calculate the total cost per unit of each product using the Activity Based Costing Method.
(10 Marks)
Answer
(a) (i) Statement of Joint Cost allocation of inventories of X, Y and Z

	Products			Total $(₹)$
	$\mathbf{X}(₹)$	$\mathbf{Y}(₹)$	\mathbf{Z} (₹)	
Final sales value of total production (Working Note 1 1)	$4,50,000$	$9,60,000$	$15,00,000$	$29,10,000$
$(15,000 \times ₹ 30)$	$(15,000 \times ₹ 64)$	$(30,000 \times ₹ 50)$		
Less: Additional cost	--	$6,60,000$	$11,00,000$	$17,60,000$

Net realisable value (at split-off point)	$4,50,000$	$3,00,000$	$4,00,000$	$11,50,000$
Joint cost allocated (Working Note 2)	$2,34,000$	$1,56,000$	$2,08,000$	$5,98,000$

(ii) Calculation of Cost of goods sold and Closing inventory

	Products			Total (₹)
	X (₹)	Y (₹)	Z (₹)	
Allocated joint cost	2,34,000	1,56,000	2,08,000	5,98,000
Add: Additional costs	--	6,60,000	11,00,000	17,60,000
Cost of goods sold (COGS)	2,34,000	8,16,000	13,08,000	23,58,000
Less: Cost of closing inventory (Working Note 1)	$\begin{array}{r} 78,000 \\ (\text { COGS } \times 100 / 3 \%) \end{array}$	--	$\begin{array}{r} 3,27,000 \\ (\text { COGS } \times 25 \%) \end{array}$	4,05,000
Cost of goods sold	1,56,000	8,16,000	9,81,000	19,53,000

(iii) Comparative Statement of Gross Profit

	Products			Total (₹)
	X (₹)	Y (₹)	Z (₹)	
Sales revenue	$\begin{array}{r} 3,00,000 \\ (10,000 \times ₹ 30) \end{array}$	$\begin{array}{r} 9,60,000 \\ (15,000 \times ₹ 64) \end{array}$	$\begin{array}{r} 11,25,000 \\ (22,500 \times ₹ 50) \end{array}$	23,85,000
Less: Cost of goods sold	1,56,000	8,16,000	9,81,000	19,53,000
Gross Profit	1,44,000	1,44,000	1,44,000	4,32,000

Working Notes:

1. Total production of three products for the year 2019-2020

Products	Quantity sold in litres	Quantity of closing inventory in litres	Total production	Closing inventory percentage $(\%)$
$\mathbf{(1)}$	$\mathbf{(2)}$	(3)	$(\mathbf{4})=[(\mathbf{2})+(3)\}$	$\mathbf{(5) = (3) / (4)}$
X	10,000	5,000	15,000	$100 / 3$
Y	15,000	--	15,000	--
Z	22,500	7,500	30,000	25

2. Joint cost apportioned to each product:
$=\frac{\text { Total Joint cost }}{\text { TotalNetRealisable Value }} \times$ Net Realisable Value of each product
Joint cost of product $X=\frac{₹ 5,98,000}{₹ 11,50,000} \times ₹ 4,50,000=₹ 2,34,000$
Joint cost of product $Y=\frac{₹ 5,98,000}{₹ 11,50,000} \times ₹ 3,00,000=₹ 1,56,000$
Joint cost of product $Z=\frac{₹ 5,98,000}{₹ 11,50,000} x ₹ 4,00,000=₹ 2,08,000$
(b) 1 .

Traditional Absorption Costing

		X	Y	Z	Total
(a)	Quantity (units)	1,200	1,440	1,968	4608
(b)	Direct labour per unit (₹)	18	20	30	-
(c)	Direct labour hours $(\mathrm{a} \times \mathrm{b}) / ₹ 4$	5,400	7,200	14,760	27,360

Overhead rate per direct labour hour:
$=$ Budgeted overheads \div Budgeted labour hours
$=(₹ 50,000+₹ 40,000+₹ 28,240+₹ 1,28,000) \div 27,360$ hours
= ₹ $2,46,240 \div 27,360$ hours
= ₹ 9 per direct labour hour
Unit Costs:

	X	Y	Z
Direct Costs:			
- Direct Labour (₹)	18.00	20.00	30.00
- Direct Material (₹)	90.00	84.00	176.00
Production Overhead: (₹)	40.50	45.00	67.50
	$\left(\frac{9 \times 18}{4}\right)$	$\left(\frac{9 \times 20}{4}\right)$	$\left(\frac{9 \times 30}{4}\right)$
Total cost per unit (₹)	$\mathbf{1 4 8 . 5 0}$	$\mathbf{1 4 9 . 0 0}$	$\mathbf{2 7 3 . 5 0}$

2. Calculation of Cost-Driver level under Activity Based Costing

	X	Y	Z	Total
Quantity (units)	1,200	1,440	1,968	-
No. of orders (to be rounded off for fraction)	$\begin{gathered} 48 \\ (1200 / 25) \end{gathered}$	$\begin{gathered} \hline 58 \\ (1440 / 25) \end{gathered}$	$\begin{gathered} 79 \\ (1968 / 25) \end{gathered}$	185
No. of production runs	$\begin{gathered} 25 \\ (1200 / 48) \\ \hline \end{gathered}$	$\begin{gathered} \hline 30 \\ (1440 / 48) \end{gathered}$	$\begin{gathered} \hline 41 \\ (1968 / 48) \end{gathered}$	96
No. of Inspections (done for each production run)	25	30	41	96
Maintenance hours	1,600	1,600	3,200	6400

Calculation of Cost-Driver rate

Activity	Budgeted Cost (₹) (a)	Cost-driver Ievel (b)	Cost Driver rate (₹) (c) (a) $/$ (b)
Material procurement Set-up Quality control Maintenance	50,000	185	270.27
	40,000	96	416.67
	28,240	96	294.17
	$1,28,000$	6,400	20.00

Calculation of total cost of products using Activity Based Costing

Particulars	Product		
	X (₹)	Y (₹)	Z (₹)
Direct Labour	18.00	20.00	30.00
Direct Material	90.00	84.00	176.00
Prime Cost per unit (A)	108.00	104.00	206.00
Material procurement	$\begin{gathered} 10.81 \\ {[(48 \times 270.27) / 1200]} \end{gathered}$	$\begin{gathered} 10.89 \\ {[(58 \times 270.27) / 1440]} \end{gathered}$	$\begin{gathered} 10.85 \\ {[(79 \times 270.27) / 1968]} \end{gathered}$
Set-up	$\begin{gathered} 8.68 \\ {[(25 \times 416.67) / 1200]} \end{gathered}$	$\begin{gathered} \hline 8.68 \\ {[(30 \times 416.67) / 1440]} \end{gathered}$	$\begin{gathered} 8.68 \\ {[(41 \times 416.67) / 1968]} \\ \hline \end{gathered}$
Quality control	$\begin{gathered} 6.13 \\ {[(25 \times 294.17) / 1200]} \end{gathered}$	$\begin{gathered} 6.13 \\ {[(30 \times 294.17) / 1440]} \end{gathered}$	$\begin{gathered} \hline 6.13 \\ {[(41 \times 294.17) / 1968]} \end{gathered}$
Maintenance	$\begin{gathered} 26.67 \\ {[(1,600 \times 20) / 1200]} \end{gathered}$	$\begin{gathered} 22.22 \\ {[(1,600 \times 20) / 1440]} \end{gathered}$	$\begin{gathered} 32.52 \\ {[(3,200 \times 20) / 1968]} \end{gathered}$

Overhead Cost per unit (B)	52.29	47.92	58.18
Total Cost per unit (A + B)	160.29	151.92	$\mathbf{2 6 4 . 1 8}$

Note: Question may also be solved assuming no. of orders for material procurement to be 25 for each product.

Question 5

(a) ABC Health care runs an Intensive Medical Care Unit. For this purpose, it has hired a building at a rent of ₹ 50,000 per month with the agreement to bear the repairs and maintenance charges also.
The unit consists of 100 beds and 5 more beds can comfortably be accommodated when the situation demands. Though the unit is open for patients all the 365 days in a year, scrutiny of accounts for the year 2020 reveals that only for 120 days in the year, the unit had the full capacity of 100 patients per day and for another 80 days, it had, on an average only 40 beds occupied per day. But, there were occasions when the beds were full, extra beds were hired at a charge of ₹ 50 per bed per day. This did not come to more than 5 beds above the normal capacity on any one day. The total hire charges for the extra beds incurred for the whole year amounted to ₹ 20,000 .
The unit engaged expert doctors from outside to attend on the patients and the fees were paid on the basis of the number of patients attended and time spent by them which on an average worked out to ₹ 30,000 per month in the year 2020.
The permanent staff expenses and other expenses of the unit were as follows:

	$\mathbf{₹}$
2 Supervisors each at a per month salary of	5,000
4 Nurses each at a per month salary of	3,000
2 Ward boys each at a per month salary of	1,500
Other Expenses for the year were as under:	28,000
Repairs and Maintenance	$4,40,000$
Food supplied to patients	$1,25,000$
Caretaker and Other services for patients	$1,40,000$
Laundry charges for bed linen	$2,80,000$
Medicines supplied	75,000
Cost of Oxygen etc. other than directly borne for treatment of patients	71,000
General Administration Charges allocated to the unit	

Required:
(i) What is the profit per patient day made by the unit in the year 2020, if the unit recovered an overall amount of ₹ 200 per day on an average from each patient.
(ii) The unit wants to work on a budget for the year 2021, but the number of patients requiring medical care is a very uncertain factor. Assuming that same revenue and expenses prevail in the year 2021 in the first instance, work out the number of patient days required by the unit to break even.
(10 Marks)
(b) Premier Industries has a small factory where 52 workers are employed on an average for 25 days a month and they work 8 hours per day. The normal down time is 15%. The firm has introduced standard costing for cost control. Its monthly budget for November, 2020 shows that the budgeted variable and fixed overhead are ₹ $1,06,080$ and ₹ $2,21,000$ respectively.
The firm reports the following details of actual performance for November, 2020, after the end of the month:

Actual hours worked	$8,100 \mathrm{hrs}$
Actual production expressed in standard hours	$8,800 \mathrm{hrs}$
Actual Variable Overheads	₹ $1,02,000$
Actual Fixed Overheads	$₹ 2,00,000$

You are required to calculate:
(i) Variable Overhead Variances:
(a) Variable overhead expenditure variance.
(b) Variable overhead efficiency variance.
(ii) Fixed Overhead Variances:
(a) Fixed overhead budget variance.
(b) Fixed overhead capacity variance.
(c) Fixed overhead efficiency variance.
(iii) Control Ratios:
(a) Capacity ratio.
(b) Efficiency ratio.
(c) Activity ratio.

Answer

(a) Workings:

Calculation of number of Patient days

100 Beds $\times 120$ days	$=12000$
40 Beds $\times 80$ days	$=3,200$
Extra beds	$=400$
Total	$=15,600$

(i)

Statement of Profitability

Particulars	Amount (₹)	Amount (₹)
Income for the year (₹ 200 per patient per day \times 15,600 patient days)		$31,20,000$
Variable Costs:		
Doctor Fees ($₹ 30,000$ per month $\times 12$)	$3,60,000$	
Food to Patients (Variable)	$4,40,000$	
Caretaker Other services to patients (Variable)	$1,25,000$	
Laundry charges (Variable)	$1,40,000$	
Medicines (Variable)	$2,80,000$	
Bed Hire Charges (₹ 50×400 Beds)	20,000	
Total Variable costs		$(13,65,000)$
Contribution		$17,55,000$
Fixed Costs:		
Rent (₹ 50,000 per month $\times 12$)	$6,00,000$	
Supervisor (2 persons $\times ₹ 5,000 \times 12$)	$1,20,000$	
Nurses (4 persons $\times ₹ 3,000 \times 12$)	$1,44,000$	
Ward Boys (2 persons $\times ₹ 1500 \times 12$)	36,000	
Repairs (Fixed)	28,000	
Cost of Oxygen	75,000	
Administration expenses allocated	71,000	
Total Fixed Costs		$(10,74,000)$
Profit		$6,81,000$

Calculation of Contribution and profit per Patient day

Total Contribution	$=₹ 17,55,000$
Total Patient days	$=15,600$ days
Contribution per Patient day	$=₹ 17,55,000 / 15,600$ days $=₹ 112.50$
Total Profit	$=₹ 6,81,000$
Total Patient days	$=15,600$ days
Profit per Patient day	$=₹ 6,81,000 / 15,600$ days $=₹ 43.65$

(ii) Breakeven Point = Fixed Cost / Contribution per Patient day

$$
\begin{gathered}
=₹ 10,74,000 / ₹ 112.50 \\
=9,547 \text { patient days }
\end{gathered}
$$

(b) Workings:

Calculation of budgeted hours

Budgeted hours $=(52 \times 25 \times 8) \times 85 \%=8,840$ hours
(i) Variable overheads variance
(a) Variable overhead expenditure variance
= Std. overhead for Actual hours - Actual variable Overhead
$=\left(\frac{₹ 1,06,080}{8,840} \times 8,100\right)-₹ 1,02,000$
$=4800 \mathrm{~A}$
(b) Variable overhead efficiency variance

Std. rate per hour × (Std. hours for actual production - Actual hours)

$$
\begin{aligned}
& =\frac{₹ 1,06,080}{8,840}(8,800 \text { hours }-8,100 \text { hours }) \\
& =8400 \mathrm{~F}
\end{aligned}
$$

(ii) Fixed overhead variances
(a) Fixed overhead budget variance

$$
\begin{aligned}
& \text { = Budgeted overhead - Actual overhead } \\
& \text { = ₹ } 2,21,000-₹ 2,00,000 \\
& =21,000 \mathrm{~F}
\end{aligned}
$$

(b) Fixed overhead capacity variance

$$
\begin{aligned}
& =\text { Std rate } \times \text { (Actual hours }- \text { budgeted hours) } \\
& =\frac{₹ 2,21,000}{8,840} \times(8,100-8,840) \\
& =18,500 \mathrm{~A}
\end{aligned}
$$

(c) Fixed overhead efficiency variance

$$
\begin{aligned}
& =\text { Std rate } \times(\text { Std hours for actual production }- \text { Actual hours) } \\
& =\frac{₹ 2,21,000}{8,840} \times(8,800-8,100) \\
& =17,500 \mathrm{~F}
\end{aligned}
$$

(iii) Control Ratios

(a) Capacity Ratio

$$
\begin{aligned}
& =\frac{\text { Actual hours }}{\text { Budgeted hours }} \times 100 \\
& =\frac{8,100}{8,840} \times 100=91.63 \%
\end{aligned}
$$

(b) Efficiency Ratio

$$
\begin{aligned}
& =\frac{\text { Standard hours }}{\text { Actual hours }} \times 100 \\
& =\frac{8,800}{8,100} \times 100=108.64 \%
\end{aligned}
$$

(c) Activity Ratio

$$
\begin{aligned}
& =\frac{\text { Standard hours }}{\text { Budgted hours }} \times 100 \\
& =\frac{8,800}{8,840} \times 100=99.55 \%
\end{aligned}
$$

Question 6

Answer any four of the following:
(a) State how the following items are treated in arriving at the value of cost of material purchased:
(i) Detention Charges/Fines
(ii) Demurrage
(iii) Cost of Returnable containers
(iv) Central Goods and Service Tax (CGST)
(v) Shortage due to abnormal reasons.
(b) State the limitations of Budgetary Control System.
(c) Explain Blanket Overhead Rate and Departmental Overhead Rate. How they are calculated? State the conditions required for the application of Blanket Overhead Rate.
(d) State the method of costing that would be most suitable for:
(i) Oil Refinery
(ii) Interior Decoration
(iii) Airlines Company
(iv) Advertising
(v) Car Assembly
(e) Give any five examples of the impact of use of Information Technology in Cost Accounting.
($4 \times 5=20$ Marks)

Answer

(a) Treatment of items in arriving at the value of cost of material Purchased

S. No.	Items	Treatment
(i)	Detention charges/ Fine	Detention charges/ fines imposed for non- compliance of rule or law by any statutory authority. It is an abnormal cost and not included with cost of purchase.
(ii)	Demurrage	Demurrage is a penalty imposed by the transporter for delay in uploading or offloading of materials. It is an abnormal cost and not included with cost of purchase.
(iii)	Cost of returnable containers	Treatment of cost of returnable containers are as follows: Returnable Containers: If the containers are returned and their costs are refunded, then cost of containers should not be considered in the cost of purchase. If the amount of refund on returning the container is less than the amount paid, then, only the short fall is added with the cost of purchase.

(iv)	Central Goods and Service Tax (CGST)	Central Goods and Service Tax (CGST) is paid on manufacture and supply of goods and collected from the buyer. It is excluded from the cost of purchase if the input credit is available for the same. Unless mentioned specifically CGST is not added with the cost of purchase.
(v)	Shortage due to abnormal reasons	Shortage arises due to abnormal reasons such as material mishandling, pilferage, or due to any avoidable reasons are not absorbed by the good units. Losses due to abnormal reasons are debited to costing profit and loss account.

(b) Limitations of Budgetary Control System

Points	Description
1. Based on Estimates	Budgets are based on a series of estimates, which are based on the conditions prevalent or expected at the time budget is established. It requires revision in plan if conditions change.
2. Time factor	Budgets cannot be executed automatically. Some preliminary steps are required to be accomplished before budgets are implemented. It requires proper attention and time of management. Management must not expect too much during the initial development period.
3. Co-operation Required	Staff co-operation is usually not available during the initial budgetary control exercise. In a decentralised organisation, each unit has its own objective and these units enjoy some degree of discretion. In this type of organisation structure, coordination among different units is required. The success of the budgetary control depends upon willing co-operation and teamwork,
4. Expensive	The implementation of budget is somewhat expensive. For successful implementation of the budgetary control, proper organisation structure with responsibility is prerequisite. Budgeting process start
from the collection of information to for preparing the	
budget and performance analysis. It consumes	
valuable resources (in terms of qualified manpower,	
equipment, etc.) for this purpose; hence, it is an	
expensive process.	

$\left.$	5. Not a substitute for
management	\quad
:---	
intelligently applied for management to get benefited.	
Budgets are not a substitute for good management.	\right\rvert\,

(c) Blanket Overhead Rate: Blanket overhead rate refers to the computation of one single overhead rate for the whole factory.
This overhead rate is computed as follows:
Blanket Rate $=\frac{\text { Total overheads for the factory }}{\text { Total number of units of base for the factory }}$
Departmental Overhead Rate: It refers to the computation of one single overhead rate for a particular production unit or department.

This overhead rate is determined by the following formula:
Departmental overhead Rate $=\frac{\text { Overheads of department or cost centre }}{\text { Corresponding base }}$
Conditions required for the Application of Blanket Overhead:
A blanket rate should be applied in the following cases:
(1) Where only one major product is being produced.
(2) Where several products are produced, but
(a) All products pass through all departments; and
(b) All products are processed for the same length of time in each department.
(d) Method of Costing

S.No.	Industry	Method of Costing
(i)	Oil Refinery	Process Costing
(ii)	Interior Decoration	Job Costing
(iii)	Airlines Company	Operation/ Service Costing
(iv)	Advertising	Job Costing
(v)	Car Assembly	Multiple Costing

(e) Example of Impact of Information Technology in cost accounting may include the following:
(i) After the introduction of ERPs, different functional activities get integrated and as a consequence a single entry into the accounting system provides custom made reports for every purpose and saves an organisation from preparing different sets of documents. Reconciliation process of results of both cost and financial accounting systems become simpler and less sophisticated.
(ii) A move towards paperless environment can be seen where documents like Bill of Material, Material Requisition Note, Goods Received Note, labour utilisation report etc. are no longer required to be prepared in multiple copies, the related department can get e-copy from the system.
(iii) Information Technology with the help of internet (including intranet and extranet) helping in resource procurement and mobilisation. For example, production department can get materials from the stores without issuing material requisition note physically. Similarly, purchase orders can be initiated to the suppliers with the help of extranet. This enables an entity to shift towards Just-in-Time (JIT) approach of inventory management and production.
(iv) Cost information for a cost centre or cost object is ascertained with accuracy in timely manner. Each cost centre and cost object is codified and all related costs are assigned to the cost objects or cost centres using assigned codes. This automates the cost accumulation and ascertainment process. The cost information can be customised as per the requirement. For example, when an entity manufacture or provide services, are able to know information job-wise, batch-wise, process-wise, cost centre wise etc.
(v) Uniformity in preparation of report, budgets and standards can be achieved with the help of IT. ERP software plays an important role in bringing uniformity irrespective of location, currency, language and regulations.
(vi) Cost and revenue variance reports are generated in real time basis which enables the management to take control measures immediately.
(vii) IT enables an entity to monitor and analyse each process of manufacturing or service activity closely to eliminate non value added activities.

[^0]: * ₹ $5,00,000+[3$ times (from 60% to 75%) x 50,000] = ₹ $6,50,000$
 ** ₹ $6,50,000+[1$ time (from 75% to 80%) x 50,000] + [2 times (from 80% to 100%) $\times 75,000]=₹ 8,50,000$

