PAPER - 3: COST AND MANAGEMENT ACCOUNTING

Question No. 1 is compulsory.
Attempt any four questions out of the remaining five questions.
In case, any candidate answers extra question(s)/ sub-question(s) over and above the required number, then only the requisite number of questions first answered in the answer book shall be valued and subsequent extra question(s) answered shall be ignored.

Working notes should form part of the answers.

Question 1

Answer the following:
(a) G Ltd. manufactures a single product for which market demand exists for additional quantity. Present sales of $₹ 6,00,000$ utilises only 60% capacity of the plant. The following data are available:
(1) Selling price : ₹ 100 per unit
(2) Variable cost : ₹30 per unit
(3) Semi-variable expenses : ₹ 60,000 fixed + ₹ 5 per unit
(4) Fixed expenses : ₹ $1,00,000$ at present level, estimated to increase by 25% at and above 80% capacity.
You are required to prepare a flexible budget so as to arrive at the operating profit at 60%, 80% and 100% levels.
(b) Moon Ltd. produces products 'X', 'Y' and 'Z' and has decided to analyse it's production mix in respect of these three products - 'X', 'Y' and 'Z'.
You have the following information:

	X	Y	Z
Direct Materials $₹$ (per unit)	160	120	80
Variable Overheads $₹$ (per unit)	8	20	12

Direct labour :

Departments:	Rate per Hour (₹)	Hours per unit	Hours per unit	Hours per unit
		X	Y	Z
Department-A	4	6	10	5
Department-B	8	6	15	11

From the current budget, further details are as below :

	\boldsymbol{X}	\boldsymbol{Y}	Z
Annual Production at present (in units)	10,000	12,000	20,000
Estimated Selling Price per unit (()	312	400	240
Sales departments estimate of possible sales in the coming year (in units)	12,000	16,000	24,000

There is a constraint on supply of labour in Department-A and its manpower cannot be increased beyond its present level.
Required:
(i) Identify the best possible product mix of Moon Ltd.
(ii) Calculate the total contribution from the best possible product mix.
(c) A company's plant processes 6,750 units of a raw material in a month to produce two products ' M ' and ' N '.
The process yield is as under:
Product M 80\%
Product N $\quad 12 \%$
Process Loss 8\%
The cost of raw material is $₹ 80$ per unit.
Processing cost is ₹ $2,25,000$ of which labour cost is accounted for 66%. Labour is chargeable to products ' M ' and ' N ' in the ratio of 100:80.
Prepare a Comprehensive Cost Statement for each product showing:
(i) Apportionment of joint cost among products ' M ' and ' N ' and
(ii) Total cost of the products ' M ' and ' N '.
(d) W Limited undertook a contract for ₹ $5,00,000$ on $1^{\text {st }}$ July, 2019. On 30th June, 2020 when the accounts were closed, the following details about the contract were gathered:

Amount (₹)

Materials purchased	$1,00,000$
Wages paid	45,000
General expenses	10,000
Materials on hand (30-6-2020)	25,000
Wages accrued (30-6-2020)	5,000
Work certified	$2,00,000$

Cash received	$1,50,000$
Work uncertified	15,000

The above contract contained "Escalation clause" which read as follows :
"In the event of increase in the prices of materials and rates of wages by more than 5%, the contract price would be increased accordingly by 25% of the rise in the cost of materials and wages beyond 5% in each case."
It was found that since the date of signing the agreement, the prices of materials and wage rates increased by 25%. The value of the work certified does not take into account the effect of the above clause.
Calculate the 'value of work certified' after taking the effect of 'Escalation Clause' as on 30th June, 2020.
($4 \times 5=20$ Marks)

Answer

(a)

Flexible Budget

Activity Level	$\mathbf{6 0 \%}$	$\mathbf{8 0 \%}$	$\mathbf{1 0 0 \%}$
Production (units)	$\mathbf{6 , 0 0 0}$	$\mathbf{8 , 0 0 0}$	$\mathbf{1 0 , 0 0 0}$
	$\mathbf{(₹)}$	$\mathbf{(₹)}$	$\mathbf{(₹)}$
Sales @ ₹ 100 per unit	$6,00,000$	$8,00,000$	$\mathbf{1 0 , 0 0 , 0 0 0}$
Variable Cost	$2,10,000$	$2,80,000$	$3,50,000$
(@ ₹ 35 (₹ $30+₹ 5$) per unit)			
Contribution (A)	$3,90,000$	$5,20,000$	$6,50,000$
Fixed Cost (part of semi-variable cost)	60,000	60,000	60,000
Other Fixed Cost	$1,00,000$	$\mathbf{1 , 2 5 , 0 0 0}$	$\mathbf{1 , 2 5 , 0 0 0}$
Total Fixed Cost (B)	$1,60,000$	$1,85,000$	$1,85,000$
Operating Profit (A - B)	$\mathbf{2 , 3 0 , 0 0 0}$	$\mathbf{3 , 3 5 , 0 0 0}$	$\mathbf{4 , 6 5 , 0 0 0}$

(b) (i)

Statement Showing "Calculation of Contribution/ unit"

Particulars	\mathbf{X} (₹)	Y (₹)	Z (₹)
Selling Price (A)	312	400	240
Variable Cost:			
Direct Material	160	120	80
Direct Labour			
Dept. A (Rate x Hours)		24	40

Dept. B (Rate x Hours)	48	120	88
Variable Overheads	8	20	12
Total Variable Cost (B)	240	300	200
Contribution per unit (A - B)	72	100	40
Hours in Dept. A	6	10	5
Contribution per hour	12	10	8
Rank	I	II	III

Existing Hours $=10,000 \times 6 \mathrm{hrs} .+12,000 \times 10 \mathrm{hrs} .+20,000 \times 5 \mathrm{hrs} .=2,80,000 \mathrm{hrs}$.
Best possible product mix (Allocation of Hours on the basis of ranking)

Produce ' X '	$=12,000$ units
Hours Required	$=72,000 \mathrm{hrs}(12,000$ units $\times 6 \mathrm{hrs})$.
Balance Hours Available	$=2,08,000 \mathrm{hrs}(2,80,000 \mathrm{hrs} .-72,000 \mathrm{hrs})$.
Produce ' Y ' (the Next Best)	$=16,000$ units
Hours Required	$=1,60,000 \mathrm{hrs}(16,000$ units $\times 10 \mathrm{hrs})$.
Balance Hours Available	$=48,000 \mathrm{hrs}(2,08,000 \mathrm{hrs} .-1,60,000 \mathrm{hrs})$.
Produce ' Z ' (balance)	$=9,600$ units ($48,000 \mathrm{hrs} . / 5 \mathrm{hrs})$.

(ii)

Statement Showing "Contribution"

Product	Units	Contribution/ Unit (₹)	Total Contribution (₹)		
X	12,000	72	$8,64,000$		
Y	16,000	100	$16,00,000$		
Z	9,600	40	$3,84,000$		
Total					$\mathbf{2 8 , 4 8 , 0 0 0}$

(c) Comprehensive Cost Statement

Particulars	Total Cost $(₹)$	Product-M $(₹)$	Product-N $(₹)$
No. of units produced *		5,400 units	810 units
Cost of raw material (₹ $80 \times 6,750$ units) Processing cost:	$5,40,000$		

* No. of units produced of Product $M=6750$ units $\times 80 \%=5400$ units

No. of units produced of Product $N=6750$ units $\times 12 \%=810$ units
(d) Workings:
(i) Percentage of work certified:

$$
\frac{\text { Value of work certified }}{\text { Contract price }} \times 100=\frac{₹ 2,00,000}{₹ 5,00,000} \times 100=40 \%
$$

(ii) Value of material and labour used in the contract:

Particulars	Amount $(₹)$	Amount (₹)
Material purchased	$1,00,000$	
Less: Material on hand (30-06-2020)	$(25,000)$	75,000
Wages paid	45,000	
Add: Wages accrued (30-06-2020)	5,000	50,000
		$1,25,000$

Price of materials and wages has been increased by 25%, the value before price increase is:

$$
\frac{₹ 1,25,000}{125} \times 100=₹ 1,00,000
$$

(iii) Calculation of Value of work certified:

The value of the contract would be increased by 25% of the price increased beyond 5\%.
Price increased beyond $5 \%=₹ 25,000-5 \%$ of $₹ 1,00,000=₹ 20,000$
Value of contract would be increased by 25% of $₹ 20,000=₹ 5,000$
Therefore, the revised contract value $=₹ 5,00,000+₹ 5,000=₹ 5,05,000$
Calculation of the Value of work certified after taking the effect of escalation clause:
Revised contract value \times Percentage of work certified
$=₹ 5,05,000 \times 40 \%=₹ 2,02,000$

Question 2

(a) X Ltd. manufactures two types of pens 'Super Pen' and 'Normal Pen'.

The cost data for the year ended 30th September, 2019 is as follows:

	(₹)
Direct Materials	$8,00,000$
Direct Wages	$4,48,000$
Production Overhead	$1,92,000$
Total	$14,40,000$

It is further ascertained that :
(1) Direct materials cost in Super Pen was twice as much of direct material in Normal Pen.
(2) Direct wages for Normal Pen were 60% of those for Super Pen.
(3) Production overhead per unit was at same rate for both the types.
(4) Administration overhead was 200% of direct labour for each.
(5) Selling cost was ₹ 1 per Super pen.
(6) Production and sales during the year were as follow :

Production		Sales	
	No. of units		No. of units
Super Pen	40,000	Super Pen	36,000
Normal Pen	$1,20,000$		

(7) Selling price was ₹ 30 per unit for Super Pen.

Prepare a Cost Sheet for 'Super Pen' showing:
(i) Cost per unit and Total Cost
(ii) Profit per unit and Total Profit
(10 Marks)
(b) TEE Ltd. is a manufacturing company having three production departments ' P ', ' Q ' and ' R ' and two service departments ' X ' and ' Y ' details pertaining to which are as under :

	P	Q	R	X	Y
Direct wages ($)^{\prime}$)	5,000	1,500	4,500	2,000	800
Working hours	13,191	7,598	14,995	-	-
Value of machine (₹)	$1,00,000$	80,000	$1,00,000$	20,000	50,000
H.P. of machines	100	80	100	20	50
Light points (Nos.)	20	10	15	5	10
Floor space (sq. ft.)	2,000	2,500	3,500	1,000	1,000

The expenses are as follows:

	$(₹)$
Rent and Rates	10,000
General Lighting	600
Indirect Wages	3,450
Power	3,500
Depreciation on Machines	70,000
Sundries (apportionment on the basis of direct wages)	13,800

The expenses of Service Departments are allocated as under :

	P	Q	R	X	Y
X	45%	15%	30%	-	10%
Y	35%	25%	30%	10%	-

Product ' A ' is processed for manufacture in Departments P, Q and R for 6, 5 and 2 hours respectively.
Direct Costs of Product A are :
Direct material cost is ₹ 65 per unit and Direct labour cost is ₹ 40 per unit.
You are Required to:
(i) Prepare a statement showing distribution of overheads among the production and service departments.
(ii) Calculate recovery rate per hour of each production department after redistributing the service departments costs.
(iii) Find out the Total Cost of a 'Product A'.

Answer

(a) Preparation of Cost Sheet for Super Pen

No. of units produced $=40,000$ units
No. of units sold $\quad=36,000$ units

Particulars	Per unit (₹)	Total (₹)
Direct materials (Working note- (i))	8.00	3,20,000
Direct wages (Working note- (ii))	4.00	1,60,000
Prime cost	12.00	4,80,000
Production overhead (Working note- (iii))	1.20	48,000
Factory Cost	13.20	5,28,000
Administration Overhead* (200\% of direct wages)	8.00	3,20,000
Cost of production	21.20	8,48,000
Less: Closing stock (40,000 units - 36,000 units)		(84,800)
Cost of goods sold i.e. 36,000 units	21.20	7,63,200
Selling cost	1.00	36,000
Cost of sales/ Total cost	22.20	7,99,200
Profit	7.80	2,80,800
Sales value (₹ $30 \times 36,000$ units)	30.00	10,80,000

Working Notes:

(i) Direct material cost per unit of Normal pen $=\mathrm{M}$

Direct material cost per unit of Super pen $=2 \mathrm{M}$
Total Direct Material cost $\quad=2 \mathrm{M} \times 40,000$ units $+\mathrm{M} \times 1,20,000$ units
Or, ₹ $8,00,000 \quad=80,000 \mathrm{M}+1,20,000 \mathrm{M}$
Or, $\quad M \quad \frac{₹ 8,00,000}{2,00,000}=₹ 4$
Therefore, Direct material Cost per unit of Super pen $=2 \times ₹ 4=₹ 8$
(ii) Direct wages per unit for Super pen = W

Direct wages per unit for Normal Pen $=0.6 \mathrm{~W}$
So, $(\mathrm{W} \times 40,000)+(0.6 \mathrm{~W} \times 1,20,000)=₹ 4,48,000$

$$
W=₹ 4 \text { per unit }
$$

(iii) Production overhead per unit $=\frac{₹ 1,92,000}{(40,000+1,20,000)}=₹ 1.20$

Production overhead for Super pen $=₹ 1.20 \times 40,000$ units $=₹ 48,000$

* Administration overhead is specific to the product as it is directly related to direct labour as mentioned in the question and hence to be considered in cost of production only.
Assumption: It is assumed that in point (1) and (2) of the Question, direct materials cost and direct wages respectively is related to per unit only.

Note: Direct Material and Direct wages can be calculated in alternative ways.
(b) (i)

Statement showing distribution of Overheads

Primary Distribution Summary

Item of cost	Basis of apportionment	Total (₹)	$\begin{gathered} \text { P } \\ \text { (₹) } \end{gathered}$	$\begin{gathered} Q \\ \text { (₹) } \end{gathered}$	$\begin{gathered} \mathrm{R} \\ \text { (₹) } \end{gathered}$	$\begin{gathered} X \\ (₹) \end{gathered}$	$\begin{gathered} Y \\ \text { Y } \\ \text { (₹) } \end{gathered}$
Direct wages	Actual	2,800	--	--	--	2,000	800
Rent and Rates	Floor area (4:5:7:2:2)	10,000	2,000	2,500	3,500	1,000	1,000
General lighting	$\begin{aligned} & \text { Light points } \\ & \text { (4:2:3:1:2) } \end{aligned}$	600	200	100	150	50	100
Indirect wages	Direct wages (50:15:45:20:8)	3,450	1,250	375	1,125	500	200
Power	Horse Power of machines used (10:8:10:2:5)	3,500	1,000	800	1,000	200	500
Depreciation of machinery	Value of machinery (10:8:10:2:5)	70,000	20,000	16,000	20,000	4,000	10,000
Sundries	Direct wages (50:15:45:20:8)	13,800	5,000	1,500	4,500	2,000	800
Total		1,04,150	29,450	21,275	30,275	9,750	13,400

Secondary Distribution using simultaneous equation method:

Overheads of service cost centres

Let, X be the overhead of service cost centre X
Y be the overhead of service cost centre Y

$$
\begin{aligned}
& X=9,750+0.10 Y \\
& Y=13,400+0.10 X \\
& \text { Substituting the value of } Y \text { in } X \text { we get } \\
& X=9,750+0.10(13,400+0.10 \mathrm{X}) \\
& X=9,750+1,340+0.01 X \\
& 0.99 X=11,090 \\
& \therefore X=₹ 11,202 \\
& \therefore Y=13,400+0.10 \times 11,202 \\
& \\
& \quad=₹ 14,520.20
\end{aligned}
$$

Secondary Distribution Summary

Particulars	Total (₹)	$\mathbf{P}(₹)$	$\mathbf{Q}(₹)$	$\mathbf{R}(₹)$
Allocated and Apportioned over-heads as per primary distribution		$29,450.00$	$21,275.00$	$30,275.00$
X	$11,202.00$	$5,040.90$	$1,680.30$	$3,360.60$
Y	$14,520.20$	$5,082.07$	$3,630.05$	$4,356.06$
Total		$39,572.97$	$26,585.35$	$37,991.66$

(ii) Calculation of Overhead recovery rate per hour

	$\mathbf{P}(₹)$	$\mathbf{Q}(₹)$	$\mathbf{R}(₹)$
Total overheads cost	$39,572.97$	$\mathbf{2 6 , 5 8 5 . 3 5}$	$\mathbf{3 7 , 9 9 1 . 6 6}$
Working hours	13,191	7,598	14,995
Rate per hour $(₹)$	$\mathbf{3}$	$\mathbf{3 . 5 0}$	$\mathbf{2 . 5 3}$

(iii) Cost of Product A

	(₹)
Direct material	65.00
Direct labour	40.00
Prime cost	105.00
Production on overheads	

P	6 hours $\times ₹ 3=₹ 18$	
Q	5 hours $\times ₹ 3.50=₹ 17.50$	
R	2 hours $\times ₹ 2.53=₹ \underline{5.06}$	40.56
Total cost	145.56	

Note: Secondary Distribution can also be done using repeated distribution Method

Question 3

(a) ABC Ltd. has furnished the following information regarding the overheads for the month of June 2020 :

(i)	Fixed Overhead Cost Variance	₹ 2,800 (Adverse)
(ii)	Fixed Overhead Volume Variance	₹2,000 (Adverse)
(iii)	Budgeted Hours for June, 2020	2,400 hours
(iv)	Budgeted Overheads for June,2020	₹ 12,000
(v)	Actual rate of recovery of overheads	₹ 8 Per Hour

From the above given information
Calculate:
(1) Fixed Overhead Expenditure Variance
(2) Actual Overheads Incurred
(3) Actual Hours for Actual Production
(4) Fixed Overhead Capacity Variance
(5) Standard hours for Actual Production
(6) Fixed Overhead Efficiency Variance
(10 Marks)
(b) An automobile company purchases 27,000 spare parts for its annual requirements. The cost per order is ₹ 240 and the annual carrying cost of average inventory is 12.5%. Each spare part costs ₹ 50 .
At present, the order size is 3,000 spare parts.
(Assume that number of days in a year $=360$ days)
Find out:
(i) How much the company's cost would be saved by opting EOQ model?
(ii) The Re -order point under EOQ model if lead time is 12 days.
(iii) How frequently should orders for procurement be placed under EOQ model?
(10 Marks)

Answer

(a) (1) Fixed Overhead Expenditure Variance
$=$ Budgeted Fixed Overheads - Actual Fixed Overheads
$=₹ 12,000-₹ 12,800$ (as calculated below) = ₹ $800(\mathrm{~A})$
(2) Fixed Overhead Cost Variance= Absorbed Fixed Overheads - Actual Fixed Overheads

$$
\begin{aligned}
2,800(\mathrm{~A}) & =₹ 10,000 \text { - Actual Overheads } \\
\text { Actual Overheads } & =₹ 12,800
\end{aligned}
$$

(3) Actual Hours for Actual Production $=₹ 12,800 / ₹ 8=1,600 \mathrm{hrs}$.
(4) Fixed Overhead capacity Variance
= Budgeted Fixed Overheads for Actual Hours- Budgeted Fixed Overheads
$=$ ₹ 5×1600 hrs. - ₹ $12,000=₹ 4,000$ (A)
(5) Standard Hours for Actual Production
= Absorbed Overheads/ Std. Rate
= ₹ 10,000 / ₹ $5=2,000 \mathrm{hrs}$.
(6) Fixed Overhead Efficiency Variance
= Absorbed Fixed Overheads - Budgeted Fixed Overheads for Actual Hours
= ₹ 10,000 - ₹ $5 \times 1,600$ hrs. $=₹ 2,000$ (F)

Working Note:

(i) Fixed Overhead Volume Variance = Absorbed Fixed Overheads - Budgeted Fixed Overheads

2,000 (A)	$=$ Absorbed Fixed Overheads $-₹ 12,000$
Absorbed Fixed Overheads	$=₹ 10,000$
Standard Rate/ Hour	$=₹ 5$ ($12,000 / 2,400$ hrs.)

(b) Working Notes:

Annual requirement (A)	$=27,000$ units
Cost per order (O)	$=₹ 240$
Inventory carrying cost (i)	$=12.5 \%$
Cost per unit of spare (c)	$=₹ 50$
Carrying cost per unit $(\mathrm{i} \times \mathrm{c})$	$=₹ 50 \times 12.5 \%=₹ 6.25$

Economic Order Quantity (EOQ) $=\sqrt{\frac{2 \times \mathrm{A} \times \mathrm{O}}{\mathrm{i} \times \mathrm{c}}}$

$$
=\sqrt{\frac{2 \times 27,000 \times 240}{6.25}}=1440 \text { units }
$$

(i) Calculation of saving by opting EOQ:

	Existing Order policy	EOQ Model
No. of orders	9 $\left(\frac{27,000}{3,000}\right)$	18.75 or 19 $\left(\frac{27,000}{1,440}\right)$
A. Ordering Cost (₹)	2,160 $(₹ 240 \times 9)$	$\left\{₹ 240 \times\left(\frac{27,000}{1,440}\right)\right\}$
B. Carrying cost (₹)	9,375 $\left(\frac{3,000 \times ₹ 6.25}{2}\right)$	$\left(\frac{1,440 \times ₹ 6.25}{2}\right)$
Total cost (A+B) (₹)	11,535	9,000

Savings of Cost by opting EOQ Model = ₹ $11,535-₹ 9,000=₹ 2,535$
(ii) Re-order point under EOQ:

Re-order point/ Re-order level $=$ Maximum consumption \times Maximum lead time
Consumption per day $=\frac{27,000 \text { units }}{360 \text { days }}=75$ units
Re-order point/ Re-order level $=75$ units $\times 12$ days $=900$ units
(iii) Frequency of Orders (in days):
$\frac{360 \text { days }}{\text { No. of orders a year }}=\frac{360 \text { days }}{19}=18.95$ days or 19 days

Question 4

(a) Following details are related to the work done in Process-I by $A B C$ Ltd. during the month of May 2019 :

	(₹)
Opening work in process (3,000 units) Materials	$1,80,500$

Labour	32,400
Overheads	90,000
Materials introduced in Process-I (42,000 units)	$36,04,000$
Labour	$4,50,000$
Overheads	$15,18,000$

Units Scrapped
: 4,800 units
Degree of completion
Materials : 100\%
Labour \& overhead : 70\%
Closing Work-in-process : 4,200 units
Degree of completion :
Materials : 100\%
Labour \& overhead : 50\%
Units finished and transferred to Process-II : 36,000 units
Normal loss:
4\% of total input including opening work-in-process
Scrapped units fetch ₹ 62.50 per piece.
Prepare:
(i) Statement of equivalent production.
(ii) Statement of cost per equivalent unit.
(iii) Process-I A/c
(iv) Normal Loss Account and
(v) Abnormal Loss Account
(b) Following are the particulars of two workers ' R ' and ' S ' for a month:

Particulars	R	S	
(i)	Basic Wages ($₹$)	15,000	30,000
(ii)	Dearness Allowance	50%	50%
(iii)	Contribution to EPF (on basic wages)	7%	7.5%
(iv)	Contribution to ESI (on basic wages)	2%	2%
(v)	Overtime (hours)	20	-

The normal working hours for the month are 200 hrs. Overtime is paid at double the total of normal wages and dearness allowance. Employer's contribution to State Insurance and Provident Fund are at equal rates with employees' contributions.
Both workers were employed on jobs A, B and C in the following proportions :

Jobs	A	B	C
R	75%	10%	15%
S	40%	20%	40%

Overtime was done on job 'A'.
You are required to :
(i) Calculate ordinary wage rate per hour of ' R ' and ' S '.
(ii) Allocate the worker's cost to each job ' A ', ' B ' and ' C '.
(c) Discuss any four objectives of 'Time keeping' in relation to attendance and payroll procedures.
(4 Marks)

Answer

(a) (i) Statement of Equivalent Production (Weighted Average method)

Particulars	Input Units	Particulars	Output Units	Equivalent Production			
				Material		Labour \& O.H.	
				\%	Units	\%	Units
Opening WIP	3,000	Completed and transferred to Process-II	36,000	100	36,000	100	36,000
Units introduced	42,000	Normal Loss (4\% of 45,000 units)	1,800	--	--	--	--
		Abnormal loss (Balancing figure)	3,000	100	3,000	70	2,100
		Closing WIP	4,200	100	4,200	50	2,100
	45,000		45,000		43,200		40,200

(ii)

Statement showing cost for each element

Particulars	Materials $(₹)$	Labour $(₹)$	Overhead (₹)	Total (₹)
Cost of opening work- in-process	$1,80,500$	32,400	90,000	$3,02,900$
Cost incurred during the month	$36,04,000$	$4,50,000$	$15,18,000$	$55,72,000$

Less: Realisable Value of normal scrap $\left(\begin{array}{l}\text { F } 62.50 \times 1,800 \\ \text { units) }\end{array}\right.$	$(1,12,500)$	--	--	$(1,12,500)$
Total cost: (A)	$36,72,000$	$\mathbf{4 , 8 2 , 4 0 0}$	$16,08,000$	$57,62,400$
Equivalent units: (B)	43,200	40,200	40,200	
Cost per equivalent unit: (C) $=(A \div B)$	85.00	12.00	40.00	137.00

Statement of Distribution of cost

Particulars	Amount (₹)	Amount (₹)
1. Value of units completed and transferred: (36,000 units \times ₹ 137)		49,32,000
2. Value of Abnormal Loss:		
- Materials (3,000 units \times ₹ 85)	2,55,000	
- Labour (2,100 units \times ₹ 12$)$	25,200	
- Overheads (2,100 units \times ₹ 40$)$	84,000	3,64,200
3. Value of Closing W-I-P:		
- Materials (4,200 units \times ₹ 85)	3,57,000	
- Labour (2,100 units \times ₹ 12$)$	25,200	
- OVerheads (2,100 units \times ₹ 40)	84,000	4,66,200

(iii)

Process-I A/c

Particulars	Units	(₹)	Particulars	Units	(₹)
To Opening W.I.P:					
- Materials	3,000	1,80,500	By Normal Loss	1,800	1,12,500
- Labour	--	32,400	(₹ $62.5 \times 1,800$		
- Overheads	--	90,000	units)		
To Materials introduced	42,000	36,04,000	By Abnormal loss	3,000	3,64,200
To Labour		4,50,000	By Process-I A/c	36,000	49,32,000
To Overheads		15,18,000	By Closing WIP	4,200	4,66,200
	45,000	58,74,900		45,000	58,74,900

(iv)

Normal Loss A/c

Particulars	Units	(₹)	Particulars	Units	(₹)
To Process-I A/c	1,800	$1,12,500$	By Cost Ledger Control A/c	1,800	$1,12,500$
	1,800	$\mathbf{1 , 1 2 , 5 0 0}$		1,800	$\mathbf{1 , 1 2 , 5 0 0}$

(v)

Abnormal Loss A/c

Particulars	Units	$(₹)$	Particulars	Units	$(₹)$
To Process-I A/c	3,000	$3,64,200$	By Cost Ledger Control A/c (₹ $62.5 \times 3,000$ units)	3,000	$1,87,500$
	3,000	$\mathbf{3 , 6 4 , 2 0 0}$	 Loss A/c (Bal. Figure)		$1,76,700$
		3,000	$\mathbf{3 , 6 4 , 2 0 0}$		

(b) (i) Calculation of Net Wages paid to Worker ' R ' and ' S '

Particulars	$\mathbf{R}(₹)$	$\mathbf{S}(₹)$
Basic Wages	$15,000.00$	$30,000.00$
Dearness Allowance (DA) $(50 \%$ of Basic Wages)	$7,500.00$	$15,000.00$
Overtime Wages (Refer to Working Note 1)	$4,500.00$	----
Gross Wages earned	$27,000.00$	$45,000.00$
Less: Provident Fund (7\% $\times ₹ 15,000) ;(7.5 \% \times ₹ 30,000)$	$(1,050.00)$	$(2,250.00)$
Less: ESI (2\% $\times ₹$ ₹ 15,000$) ;(2 \% \times ₹ 30,000)$	(300.00)	(600.00)
Net Wages paid	$\mathbf{2 5 , 6 5 0 . 0 0}$	$\mathbf{4 2 , 1 5 0 . 0 0}$

Calculation of ordinary wage rate per hour of Worker ' R ' and ' S '

	$\mathbf{R}(₹)$	$\mathbf{S}(₹)$
Gross Wages (Basic Wages + DA) (excluding overtime)	$22,500.00$	$45,000.00$
Employer's contribution to P.F. and E.S.I.	$1,350.00$	$2,850.00$
	$23,850.00$	$47,850.00$
Ordinary wages Labour Rate per hour (₹ $23,850 \div 200$ hours); ($₹ 47,850 \div 200$ hours $)$	$\mathbf{1 1 9 . 2 5}$	239.25

(ii) Statement Showing Allocation of workers cost to each Job

	Total Wages	Jobs		
		A	B	C
Worker R				
Ordinary Wages (15:2:3)	$23,850.00$	$17,887.50$	$2,385.00$	3577.50
Overtime	4500.00	$\mathbf{4 5 0 0 . 0 0}$	-	--
Worker S				
Ordinary Wages (2:1:2)	$47,850.00$	$19,140.00$	$9,570.00$	$19,140.00$
	$76,200.00$	$\mathbf{4 1 , 5 2 7 . 5 0}$	$\mathbf{1 1 , 9 5 5 . 0 0}$	$\mathbf{2 2 , 7 1 7 . 5 0}$

Working Note:

Normal Wages are considered as basic wages.

$$
\begin{aligned}
\text { Over time } & =\frac{2 \times(\text { Basic wage }+ \text { D.A. }) \times 20 \text { hours }}{200 \text { hours }} \\
& =2 \times \frac{₹ 22,500}{200} \times 20 \text { hours } \\
& =₹ 4,500
\end{aligned}
$$

(c) The objectives of time-keeping in relation to attendance and payroll procedures are as follows:
(i) For the preparation of payrolls.
(ii) For calculating overtime.
(iii) For ascertaining and controlling employee cost.
(iv) For ascertaining idle time.
(v) For disciplinary purposes.
(vi) For overhead distribution

Question 5

(a) SEZ Ltd. built a 120 km . Iong highway and now operates a toll road to collect tolls. The company has invested ₹ 900 crore to build the road and has estimated that a total of 120 crore vehicles will be using the highway during the 10 years toll collection tenure. The other costs for the month of "June 2020" are as follows:
(i) Salary:

- Collection personnel (3 shifts and 5 persons per shift) - ₹ 200 per day per person.
- Supervisor (3 shifts and 2 persons per shift) - ₹ 350 per day per person.
- Security personnel (2 shifts and 2 persons per shift) - ₹ 200 per day per person.
- Toll Booth Manager (3 shifts and 1 person per shift) - ₹ 500 per day per person.
(ii) Electricity - ₹ $1,50,000$
(iii) Telephone - ₹ $1,00,000$
(iv) Maintenance cost - ₹ 50 lakhs
(v) The company needs 30% profit over total cost.

Required:
(1) Calculate cost per kilometre.
(2) Calculate the toll rate per vehicle.
(10 Marks)
(b) ABC Ltd. is engaged in production of three types of Fruit Juices:

Apple, Orange and Mixed Fruit.
The following cost data for the month of March 2020 are as under:

Particulars	Apple	Orange	Mixed Fruit
Units produced and sold	10,000	15,000	20,000
Material per unit (₹)	8	6	5
Direct Labour per unit (₹)	5	4	3
No. of Purchase Orders	34	32	14
No. of Deliveries	110	64	52
Shelf Stocking Hours	110	160	170

Overheads incurred by the company during the month are as under :

	($)$
Ordering costs	64,000
Delivery costs	$1,58,200$
Shelf Stocking costs	87,560

Required:
(i) Calculate cost driver's rate.
(ii) Calculate total cost of each product using Activity Based Costing.
(c) Describe the various levels of activities under 'ABC' methodology.

Answer

(a)

Statement of Cost

Particulars		(₹)
A. Apportionment of capital cost	$\left.\left(\frac{₹}{} 900 \text { crore }\right) ~ \frac{1}{1 \text { years }} \times \frac{1}{12 \text { months }}\right)$	7,50,00,000
B. Other Costs		
Salary to Collection Personnel	(3 Shifts $\times 5$ persons per shift $\times 30$ days \times ₹ 200 per day)	90,000
Salary to Supervisor	(3 Shifts $\times 2$ persons per shift $\times 30$ days \times ₹ 350 per day)	63,000
Salary to Security Personnel	(2 Shifts $\times 2$ persons per shift $\times 30$ days \times ₹ 200 per day)	24,000
Salary to Toll Booth Manager	(3 Shifts $\times 1$ person per shift $\times 30$ days x ₹ 500 per day)	45,000
Electricity		1,50,000
Telephone		1,00,000
		4,72,000
C. Maintenance cost		50,00,000
Total ($\mathrm{A}+\mathrm{B}+\mathrm{C}$)		8,04,72,000

(1) Calculation of cost per kilometre:
$=\frac{\text { Total Cost }}{\text { Total } \mathrm{km} .}=\frac{₹ 8,04,72,000}{120 \mathrm{~km} .}=₹ 6,70,600$
(2) Calculation of toll rate per vehicle:

$$
=\frac{\text { Total Cost }+25 \% \text { profit }}{\text { Vehicles per month }}=\frac{₹ 8,04,72,000+₹ 2,41,41,600}{1,00,00,000 \text { vehicles }}=₹ 10.46
$$

Working:

Vehicles per month $=\frac{\text { Total estimated vehicles }}{10 \text { years }} \times \frac{1 \text { month }}{12 \text { months }}$

$$
=\frac{120 \text { crore }}{10 \text { years }} \times \frac{1 \text { month }}{12 \text { months }}=1 \text { Crore vehicles }
$$

(b) (i) Calculation Cost-Driver's rate

Activity	Overhead cost $(₹)$	Cost-driver level	Cost driver rate $(₹)$
	(A)	(B)	$(C)=(A) /(B)$
Ordering	64,000	$34+32+14$ $=80$ no. of purchase orders	800
	$1,58,200$	$110+64+52$ $=226$ no. of deliveries	700
	87,560	$110+160+170$ $=440$ shelf stocking hours	199

(ii) Calculation of total cost of products using Activity Based Costing

Particulars	Fruit Juices		
	Apple (₹)	Orange (₹)	Mixed Fruit (₹)
Material cost	80,000	90,000	$1,00,000$
Direct labour cost	$(10,000 \times ₹ 8)$	$(15,000 \times ₹ 6)$	$(20,000 \times ₹ 5)$
	50,000	60,000	60,000
	$(10,000 \times ₹ 5)$	$(15,000 \times ₹ 4)$	$(20,000 \times ₹ 3)$
	$1,30,000$	$1,50,000$	$1,60,000$
Delivery cost	27,200	25,600	11,200
	(800×34)	(800×32)	(800×14)
Shelf stocking cost	77,000	44,800	36,400
	(700×110)	(700×64)	(700×52)
Overhead Cost (B)	21,890	31,840	33,830
Total Cost (A + B)	(199×110)	(199×160)	(199×170)
	$1,26,090$	$1,02,240$	81,430

(c) Various Level of Activities under ABC Methodology

Level of Activities	Meaning
1. Unit level activities	These are those activities for which the consumption of resources can be identified with the number of units produced.
2. Batch level activities	The activities such as setting up of a machine or processing a purchase order are performed each time a batch of goods is produced. The cost of batch related

	activities varies with number of batches made, but is common (or fixed) for all units within the batch.
3. Product level activities	These are the activities which are performed to support different products in product line.
4. Facilities level activities	These are the activities which cannot be directly attributed to individual products. These activities are necessary to sustain the manufacturing process and are common and joint to all products manufactured.

Question 6

Answer any four of the following:
(a) Differentiate between "Cost Accounting and Management Accounting".
(b) What are the important points an organization should consider if it wants to adopt Performance Budgeting?
(c) Explain what are the pre-requisites of integrated accounting.
(d) State the Method of Costing to be used in the following industries:
(i) Real Estate
(ii) Motor repairing workshop
(iii) Chemical Industry
(iv) Transport service
(v) Assembly of bicycles
(vi) Biscuits manufacturing Industry
(vii) Power supply Companies
(viii) Car manufacturing Industry
(ix) Cement Industry
(x) Printing Press
(e) Differentiate between "Marginal and Absorption Costing".

Answer

(a) Difference between Cost Accounting and Management Accounting

	Basis	Cost Accounting	Management Accounting
(i)	Nature	It records the quantiative aspect only.	It records both qualitative and quantitative aspect.
(ii)	Objective	It records the cost of producing a product and providing a service.	It Provides information to management for planning and co-ordination.

(iii)	Area	It only deals with cost Ascertainment.	It is wider in scope as it includes financial accounting, budgeting, taxation, planning etc.
(iv)	Recording of data	It uses both past and present figures.	It is focused with the projection of figures for future.
(v)	Development	Its development is related to industrial revolution.	It develops in accordance to the need of modern business world.
(vi)	Rules and Regulation	It follows certain principles and procedures for recording costs of different products.	It does not follow any specific rules and regulations.

(b) For an enterprise that wants to adopt Performance Budgeting, it is thus imperative that:

- the objectives of the enterprise are spelt out in concrete terms.
- the objectives are then translated into specific functions, programmes, activities and tasks for different levels of management within the realities of fiscal constraints.
- realistic and acceptable norms, yardsticks or standards and performance indicators should be evolved and expressed in quantifiable physical units.
- a style of management based upon decentralised responsibility structure should be adopted, and
- an accounting and reporting system should be developed to facilities monitoring, analysis and review of actual performance in relation to budgets.
(c) The essential pre-requisites for integrated accounts include the following steps:
- The management's decision about the extent of integration of the two sets of books. Some concerns find it useful to integrate up to the stage of prime cost or factory cost while other prefer full integration of the entire accounting records.
- A suitable coding system must be made available so as to serve the accounting purposes of financial and cost accounts.
- An agreed routine, with regard to the treatment of provision for accruals, prepaid expenses, other adjustment necessary for preparation of interim accounts.
- Perfect coordination should exist between the staff responsible for the financial and cost aspects of the accounts and an efficient processing of accounting documents should be ensured.
- Under this system there is no need for a separate cost ledger. Of course, there will be a number of subsidiary ledgers; in addition to the useful Customers' Ledger and the Bought Ledger, there will be: (a) Stores Ledger; (b) Stock Ledger and (c) Job Ledger.
(d) Method of costing used in different industries:

S. No.	Industries	Method of Costing
(i)	Real Estate	Contract Costing
(ii)	Motor Repairing Workshop	Job Costing
(iii)	Chemical Industry	Process Costing
(iv)	Transport Service	Service/Operating Costing
(v)	Assembly of Bicycles	Unit/ Single/Output/Multiple Costing
(vi)	Biscuits Manufacturing Industry	Batch Costing
(vii)	Power Supply Companies	Service/Operating Costing
(viii)	Car Manufacturing Industry	Multiple Costing
(ix)	Cement Industry	Unit/Single/Output Costing
(x)	Printing Press	Job Costing

(e) Difference between Marginal costing and Absorption costing

S. N.	Marginal costing	Absorption costing
1.	Only variable costs are considered for product costing and inventory valuation.	Both fixed and variable costs are considered for product costing and inventory valuation.
2.	Fixed costs are regarded as period costs. The Profitability of different products is judged by their P/V ratio.	Fixed costs are charged to the cost of production. Each product bears a reasonable share of fixed cost and thus the profitability of a product is influenced by the apportionment of fixed costs.
3.	Cost data presented highlight the total contribution of each product.	Cost data are presented in conventional pattern. Net profit of each product is determined after subtracting fixed cost along with their variable costs.
4.	The difference in the magnitude of opening stock and closing stock does not affect the unit cost of production.	The difference in the magnitude of opening stock and closing stock affects the unit cost of production due to the impact of related fixed cost.
5.	In case of marginal costing the cost per unit remains the same, irrespective of the production as it is valued at variable cost	In case of absorption costing the cost per unit reduces, as the production increases as it is fixed cost which reduces, whereas, the variable cost remains the same per unit.

