PAPER - 3: COST AND MANAGEMENT ACCOUNTING QUESTIONS

Material Cost

1. Arnav Electronics manufactures electronic home appliances. It follows weighted average Cost method for inventory valuation. Following are the data of component X :

Date	Particulars	Units	Rate per unit $(₹)$
15-12-19	Purchase Order-008	10,000	9,930
$30-12-19$	Purchase Order- 009	10,000	9,780
01-01-20	Opening stock	3,500	9,810
05-01-20	GRN*-008 (against the Purchase Order- 008)	10,000	-
05-01-20	MRN**-003 (against the Purchase Order- 008)	500	-
06-01-20	Material Requisition-011	3,000	-
07-01-20	Purchase Order- 010	10,000	9,750
10-01-20	Material Requisition-012	4,500	-
12-01-20	GRN-009 (against the Purchase Order- 009)	10,000	-
12-01-20	MRN-004 (against the Purchase Order- 009)	400	-
15-01-20	Material Requisition-013	2,200	-
24-01-20	Material Requisition-014	1,500	-
25-01-20	GRN-010 (against the Purchase Order- 010)	10,000	-
28-01-20	Material Requisition-015	4,000	-
31-01-20	Material Requisition-016	3,200	-

*GRN- Goods Received Note; **MRN- Material Returned Note
Based on the above data, you are required to CALCULATE:
(i) Re-order level
(ii) Maximum stock level
(iii) Minimum stock level
(iv) PREPARE Store Ledger for the period January 2020 and DETERMINE the value of stock as on 31-01-2020.
(v) Value of components used during the month of January, 2020.
(vi) Inventory turnover ratio.

Employee Cost

2. From the following information, CALCULATE employee turnover rate using - (i) Separation Method, (ii) Replacement Method, (iii) New Recruitment Method, and (iv) Flux Method:
No. of workers as on 01.01.2019 $=3,600$
No. of workers as on 31.12.2019 $=3,790$
During the year, 40 workers left while 120 workers were discharged. 350 workers were recruited during the year, of these 150 workers were recruited because of exits and the rest were recruited in accordance with expansion plans.

Overheads: Absorption Costing Method

3. ABC Ltd. has three production departments $\mathrm{P}_{1}, \mathrm{P}_{2}$ and P_{3} and two service departments S_{1} and S_{2}. The following data are extracted from the records of the company for the month of January, 2020:

Rent and rates	$6,25,000$
General lighting	$7,50,000$
Indirect wages	$1,87,500$
Power	$25,00,000$
Depreciation on machinery	$5,00,000$
Insurance of machinery	$2,00,000$
Other Information:	

	$\mathbf{P}_{\mathbf{1}}$	$\mathbf{P}_{\mathbf{2}}$	$\mathbf{P}_{\mathbf{3}}$	\mathbf{S}_{1}	$\mathbf{S}_{\mathbf{2}}$
Direct wages (₹)	$3,75,000$	$2,50,000$	$3,75,000$	$1,87,500$	62,500
Horse Power of Machines used	60	30	50	10	-
Cost of machinery (₹)	$30,00,000$	$40,00,000$	$50,00,000$	$2,50,000$	$2,50,000$
Floor space (Sq. ft)	2,000	2,500	3,000	2,000	500
Number of light points	10	15	20	10	5
Production hours worked	6,225	4,050	4,100	-	-

Expenses of the service departments S_{1} and S_{2} are reapportioned as below:

	\mathbf{P}_{1}	$\mathbf{P}_{\mathbf{2}}$	$\mathbf{P}_{\mathbf{3}}$	\mathbf{S}_{1}	$\mathbf{S}_{\mathbf{2}}$
\mathbf{S}_{1}	20%	30%	40%	-	10%
\mathbf{S}_{2}	40%	20%	30%	10%	-

Required:
(i) COMPUTE overhead absorption rate per production hour for each production department.
(ii) DETERMINE the total cost of product X which is processed for manufacture in department P_{1}, P_{2} and P_{3} for 5 hours, 3 hours and 4 hours respectively, given that its direct material cost is $₹ 6,250$ and direct labour cost is $₹ 3,750$.

Activity Based Costing

4. Following are the data of three product lines of a departmental store for the year 2019-20:

	Soft drinks	Fresh produce	Packaged food
Revenues	$₹ 39,67,500$	$₹ 1,05,03,000$	$₹ 60,49,500$
Cost of goods sold	$₹ 30,00,000$	$₹ 75,00,000$	$₹ 45,00,000$
Cost of bottles returned	$₹ 60,000$	$₹ 0$	$₹ 0$
Number of purchase orders placed	360	840	360
Number of deliveries received	300		
Hours of shelf-stocking time	540	5,190	660
Items sold	$1,26,000$	$11,04,000$	$3,06,000$

Additional information related with the store are as follows:

Activity	Description of activity	Total Cost	Cost-allocation base
Bottles returns	Returning of empty bottles	$₹ 60,000$	Direct tracing to soft drink line
Ordering	Placing of orders for purchases	$₹ 7,80,000$	1,560 purchase orders
Delivery	Physical delivery and receipt of goods	$₹ 12,60,000$	3,150 deliveries
Shelf stocking	Stocking of goods on store shelves and on-going restocking	$₹ 8,64,000$	8,640 hours of shelf- stocking time
Customer Support	Assistance provided to customers including check-out	$₹ 15,36,000$	$15,36,000$ items sold

Required:

CALCULATE the total cost and operating income using Activity Based Costing method.

Cost Sheet

5. From the following data of Arnav Metallic Ltd., CALCULATE Cost of production:

		Amount (₹)
(i)	Repair \& maintenance paid for plant \& machinery	$9,80,500$
(ii)	Insurance premium paid for plant \& machinery	96,000
(iii)	Raw materials purchased	$64,00,000$
(iv)	Opening stock of raw materials	$2,88,000$
(v)	Closing stock of raw materials	$4,46,000$
(vi)	Wages paid	$23,20,000$
(vii)	Value of opening Work-in-process	$4,06,000$
(viii)	Value of closing Work-in-process	$6,02,100$
(ix)	Quality control cost for the products in manufacturing process	86,000
(x)	Research \& development cost for improvement in production	92,600
	process	
(xi)	Administrative cost for:	$9,00,000$
	Factory \& production	$11,60,000$
	\quad Others	9,200
(xii)	Amountrealised by selling scrap generated during the (xiii)	manufacturing process
Packing cost necessary to preserve the goods for further	10,200	
(xiv)	processing	

Cost Accounting System

6. The following are the balances existed in the books of JPG Ltd. for the year ended, $31^{\text {st }}$ March, 2019:

Particulars	Dr.	Cr.
	$(₹)$	$(₹)$
Stores Ledger Control A/c	$30,00,000$	
WIP Control A/c	$15,00,000$	
Finished Goods Control A/c	$25,00,000$	
Manufacturing Overheads Control A/c		$1,50,000$
Cost Ledger Control A/c		$68,50,000$

During the year 2019-20, the following transactions took place:

Particulars	Amount (₹)
Finished product (at cost)	$22,50,000$
Manufacturing Overhead incurred	$8,50,000$
Raw material purchased	$12,50,000$
Factory wages	$4,00,000$
Indirect labour	$2,00,000$
Cost of sales	$17,50,000$
Materials issued to production	$13,50,000$
Sales returned (at cost)	90,000
Material returned to suppliers	$1,30,000$
Manufacturing overhead charged to production	$8,50,000$

Required:

PREPARE the following control accounts and Trial balance at the end of the year:
Cost Ledger, Stores Ledger, Work-in-process, Finished Stock, Manufacturing Overhead, Wages and Cost of Sales.

Job Costing

7. A factory uses job costing system. The following data are obtained from its books for the year ended $31{ }^{\text {st }}$ March, 2020:

	Amount (₹)
Direct materials	$18,00,000$
Direct wages	$15,00,000$
Selling and distribution overheads	$10,50,000$
Administration overheads	$8,40,000$
Factory overheads	$9,00,000$
Profit	$12,18,000$

(i) PREPARE a Job Cost sheet indicating the Prime cost, Cost of Production, Cost of sales and the Sales value.
(ii) In 2019-20, the factory received an order for a job. It is estimated that direct materials required will be ₹ $4,80,000$ and direct labour will cost $₹ 3,00,000$. DETERMINE what should be the price for the job if factory intends to earn the same rate of profit on sales assuming that the selling and distribution overheads have gone up by 15%. The
factory overheads is recovered as percentage of wages paid, whereas, other overheads as a percentage of cost of production, based on cost rates prevailing in the previous year.

Process Costing

8. Star Ltd. manufactures chemical solutions for the food processing industry. The manufacturing takes place in a number of processes and the company uses FIFO method to value work-in-process and finished goods. At the end of the last month, a fire occurred in the factory and destroyed some of papers containing records of the process operations for the month.
Star Ltd. needs your help to prepare the process accounts for the month during which the fire occurred. You have been able to gather some information about the month's operating activities but some of the information could not be retrieved due to the damage. The following information was salvaged:

- Opening work-in-process at the beginning of the month was 1,600 litres, 70% complete for labour and 60% complete for overheads. Opening work-in-process was valued at ₹ $1,06,560$.
- Closing work-in-process at the end of the month was 320 litres, 30% complete for labour and 20% complete for overheads.
- Normal loss is 10% of input and total losses during the month were 1,200 litres partly due to the fire damage.
- Output sent to finished goods warehouse was 8,400 litres.
- Losses have a scrap value of ₹ 15 per litre.
- All raw materials are added at the commencement of the process.
- The cost per equivalent unit (litre) is ₹78 for the month made up as follows:

	(₹)
Raw Material	46
Labour	14
Overheads	18
	78

Required:
(i) CALCULATE the quantity (in litres) of raw material inputs during the month.
(ii) CALCULATE the quantity (in litres) of normal loss expected from the process and the quantity (in litres) of abnormal loss / gain experienced in the month.
(iii) CALCULATE the values of raw material, labour and overheads added to the process during the month.
(iv) PREPARE the process account for the month.

Service Costing

9. AD Higher Secondary School (AHSS) offers courses for $11^{\text {th }} \& 12^{\text {th }}$ standard in three streams i.e. Arts, Commerce and Science. AHSS runs higher secondary classes alongwith primary and secondary classes but for accounting purpose it treats higher secondary as a separate responsibility centre. The Managing committee of the school wants to revise its fee structure for higher secondary students. The accountant of the school has provided the following details for a year:

	Amount (₹)
Teachers' salary (15 teachers $\times ₹ 35,000 \times 12$ months)	$63,00,000$
Principal's salary	$14,40,000$
Lab attendants' salary (2 attendants $\times ₹ 15,000 \times 12$ months)	$3,60,000$
Salary to library staff	$1,44,000$
Salary to peons (4 peons $\times ₹ 10,000 \times 12$ months)	$4,80,000$
Salary to other staffs	$4,80,000$
Examinations expenditure	$10,80,000$
Office \& Administration cost	$15,20,000$
Annual day expenses	$4,50,000$
Sports expenses	$1,20,000$

Other information:

(i)

	Standard 11 \& 12			
	Arts	Commerce	Science	Secondary
No. of students	120	360	180	840
Lab classes in a year	0	0	144	156
No. of examinations in a year	2	2	2	2
Time spent at library per student per year	180 hours	120 hours	240 hours	60 hours
Time spent by principal for administration	208 hours	312 hours	480 hours	1,400 hours
Teachers for 11 \& 12 standard	4	5	6	-

(ii) One teacher who teaches economics for Arts stream students also teaches commerce stream students. The teacher takes 1,040 classes in a year, it includes 208 classes for commerce students.
(iii) There is another teacher who teaches mathematics for Science stream students also teaches business mathematics to commerce stream students. She takes 1,100 classes a year, it includes 160 classes for commerce students.
(iv) One peon is fully dedicated for higher secondary section. Other peons dedicate their 15% time for higher secondary section.
(v) All school students irrespective of section and age participate in annual functions and sports activities.
Requirement:
(a) CALCULATE cost per student per annum for all three streams.
(b) If the management decides to take uniform fee of ₹ 1,000 per month from all higher secondary students, CALCULATE stream wise profitability.
(c) If management decides to take 10% profit on cost, COMPUTE fee to be charged from the students of all three streams respectively.

Standard Costing

10. ABC Ltd. had prepared the following estimation for the month of January:

	Quantity	Rate (₹)	Amount (₹)
Material-A	800 kg.	90.00	72,000
Material-B	600 kg.	60.00	36,000
Skilled labour	1,000 hours	75.00	75,000
Unskilled labour	800 hours	44.00	35,200

Normal loss was expected to be 10\% of total input materials and an idle labour time of 5\% of expected labour hours was also estimated.
At the end of the month the following information has been collected from the cost accounting department:
The company has produced $1,480 \mathrm{~kg}$. finished product by using the followings:

	Quantity	Rate (₹)	Amount (₹)
Material-A	900 kg.	86.00	77,400
Material-B	650 kg.	65.00	42,250
Skilled labour	1,200 hours	71.00	85,200
Unskilled labour	860 hours	46.00	39,560

You are required to CALCULATE:
(a) Material Cost Variance;
(b) Material Price Variance;
(c) Material Mix Variance;
(d) Material Yield Variance;
(e) Labour Cost Variance;
(f) Labour Efficiency Variance and
(g) Labour Yield Variance.

Marginal Costing

11. A Ltd. manufacture and sales its product $R-9$. The following figures have been collected from cost records of last year for the product $R-9$:

Elements of Cost	Variable Cost portion	Fixed Cost
Direct Material	30% of Cost of Goods Sold	--
Direct Labour	15% of Cost of Goods Sold	--
Factory Overhead	10% of Cost of Goods Sold	$₹ 2,30,000$
Administration Overhead	2% of Cost of Goods Sold	$₹ 71,000$
Selling \& Distribution Overhead	4% of Cost of Sales	$₹ 68,000$

Last Year 5,000 units were sold at $₹ 185$ per unit. From the given DETERMINE the followings:
(i) Break-even Sales (in rupees)
(ii) Profit earned during last year
(iii) Margin of safety (in \%)
(iv) Profit if the sales were 10% less than the actual sales.
(Assume that Administration Overhead is related with production activity)

Budget and Budgetary Control

12. A Vehicle manufacturer has prepared sales budget for the next few months, and the following draft figures are available:

Month	No. of vehicles
October	40,000
November	35,000
December	45,000

January	60,000
February	65,000

To manufacture a vehicle a standard cost of $₹ 11,42,800$ is incurred and sold through dealers at a uniform selling price of ₹ $17,14,200$ to customers. Dealers are paid 15% commission on selling price on sale of a vehicle.

Apart from other materials, four units of Part -X are required to manufacture a vehicle. It is a policy of the company to hold stocks of Part- X at the end of each month to cover 40\% of next month's production. 48,000 units of Part-X are in stock as on $1^{\text {st }}$ October.
There are 9,500 nos. of completed vehicles in stock as on $1^{\text {st }}$ October and it is policy to have stocks at the end of each month to cover 20% of the next month's sales.
You are required to -
(i) PREPARE Production budget (in nos.) for the month of October, November, December and January.
(ii) PREPARE a Purchase budget for Part-X (in units) for the months of October, November and December.
(iii) CALCULATE the budgeted gross profit for the quarter October to December.

Miscellaneous

13. (a) DIFFERENTIATE between Cost Accounting and Management Accounting.
(b) DISCUSS the impact of Information Technology (IT) on cost accounting system.
(c) DISCUSS the Escalation Clause in a Contract.
(d) DISCUSS the treatment of by-product cost in cost accounting.

SUGGESTED HINTS/ANSWERS

1. Workings:

Consumption is calculated on the basis of material requisitions:
Maximum component usage $=4,500$ units (Material requisition on 10-01-20)
Minimum component usage $=1,500$ units (Material requisition on 24-01-20)
Lead time is calculated from purchase order date to material received date
Maximum lead time $=21$ days (15-12-2019 to 05-01-2020)
Minimum lead time $=14$ days $(30-12-2019$ to 12-01-2020)

Calculations:

(i) Re-order level
$=$ Maximum usage \times Maximum lead time
$=4,500$ units $\times 21$ days $=94,500$ units
(ii) Maximum stock level

$$
\begin{aligned}
& =\text { Re-order level }+ \text { Re-order Quantity }-(\text { Min. Usage } \times \text { Min. lead time }) \\
& =94,500 \text { units }+10,000 \text { units }-(1,500 \text { units } \times 14 \text { days }) \\
& =1,04,500 \text { units }-21,000 \text { units }=83,500 \text { units }
\end{aligned}
$$

(iii) Minimum stock level

$$
\begin{aligned}
& =\text { Re-order level }-(\text { Avg. consumption } \times \text { Avg. lead time }) \\
& =94,500 \text { units }-(3,000 \text { units } \times 17.5 \text { days }) \\
& =94,500 \text { units }-52,500 \text { units } \\
& =42,000 \text { units }
\end{aligned}
$$

(iv) Store Ledger for the month of January 2020:

Date	Receipts				Issue				Balance		
	GRN/ MRN	Units	Rate ₹	$\begin{array}{r} \text { Amt. } \\ \text { (₹ }{ }^{\prime} 000 \text {) } \end{array}$	MRN/ MR	Units	Rate ₹	$\begin{array}{r} \text { Amt. } \\ \text { (₹ }{ }^{\prime} 000 \text {) } \end{array}$	Units	Rate ₹	$\begin{array}{r} \text { Amt. } \\ \text { (} ₹ \text { ' } 000 \text {) } \end{array}$
01-01-20									3,500	9,810	34,335
05-01-20	008	10,000	9,930	99,300	003	500	9,930	4,965	13,000	9,898	1,28,670
06-01-20					011	3,000	9,898	29,694	10,000	9,898	98,980
10-01-20					012	4,500	9,898	44,541	5,500	9,898	54,439
12-01-20	009	10,000	9,780	97,800	004	400	9,780	3,912	15,100	9,823	1,48,327
15-01-20		-			013	2,200	9,823	21,611	12,900	9,823	1,26,716
24-01-20					014	1,500	9,823	14,734	11,400	9,823	1,11,982
25-01-20	010	10,000	9,750	97,500					21,400	9,789	2,09,482
28-01-20		-	-	-	015	4,000	9,789	39,156	17,400	9,789	1,70,326
31-01-20					016	3,200	9,789	31,325	14,200	9,789	1,39,001

[Note: Decimal figures may be rounded-off to the nearest rupee value wherever required)
Value of stock as on 31-01-2020 ('000) = ₹ $1,39,001$
(v) Value of components used during the month of January 2020:

Sum of material requisitions 011 to 016 ('000)

$$
=₹ 29,694+₹ 44,541+₹ 21,611+₹ 14,734+₹ 39,156+₹ 31,325=₹ 1,81,061
$$

(vi) Inventory Turnover Ratio

$$
\begin{aligned}
& =\frac{\text { Value of materials used }}{\text { Average stock value }} \\
& =\frac{₹ 1,81,061}{₹(1,39,001+34,335) / 2}=\frac{₹ 1,81,061}{₹ 86,668}=2.09
\end{aligned}
$$

2. Employee turnover rate using:
(i) Separation Method:
$=\frac{\text { No. of workers left }+ \text { No. of workers discharged }}{\text { Average number of workers }} \times 100$

$$
=\frac{(40+120)}{(3,600+3,790) / 2} \times 100=\frac{160}{3,695} \times 100=4.33 \%
$$

(ii) Replacement Method:

$$
=\frac{\text { No. of workers replaced }}{\text { Average number of workers }} \times 100=\frac{150}{3,695} \times 100=4.06 \%
$$

(iii) New Recruitment Method:

$$
\begin{aligned}
& =\frac{\text { No. of workers newly recruited }}{\text { Average number of worker s }} \times 100 \\
& =\frac{\text { No. Recruitments }- \text { No. of Replacements }}{\text { Average number of workers }} \times 100 \\
& =\frac{350-150}{3,695} \times 100=\frac{200}{3,695} \times 100=5.41 \%
\end{aligned}
$$

(iv) Flux Method:

$$
\begin{aligned}
& =\frac{\text { No. of separations }+ \text { No. of accessions }}{\text { Average number of worker }} \times 100 \\
& =\frac{(160+350)}{(3,600+3,790) / 2} \times 100=\frac{510}{3,695} \times 100=13.80 \%
\end{aligned}
$$

3. Primary Distribution Summary

Item of cost	Basis of apportionment	Total (₹)	$\begin{aligned} & P_{1} \\ & \text { (₹) } \end{aligned}$	$\begin{aligned} & P_{2} \\ & \text { (₹) } \\ & \hline \end{aligned}$	P_{3} (₹)	S_{1} (₹)	S_{2} (₹)
Direct wages	Actual	2,50,000	--	--	--	1,87,500	62,500

Rent and rates	Floor area $(4: 5: 6: 4: 1)$	$6,25,000$	$1,25,000$	$1,56,250$	$1,87,500$	$1,25,000$	31,250
General lighting	Light points $(2: 3: 4: 2: 1)$	$7,50,000$	$1,25,000$	$1,87,500$	$2,50,000$	$1,25,000$	62,500
Indirect wages	Direct wages $(6: 4: 6: 3: 1)$	$1,87,500$	56,250	37,500	56,250	28,125	9,375
Power	Horse Power of machines used $(6: 3: 5: 1)$	$25,00,000$	$10,00,000$	$5,00,000$	$8,33,333$	$1,66,667$	-
Depreciati on of Value machinery	machinery $(12: 16: 20: 1: 1)$	$5,00,000$	$1,20,000$	$1,60,000$	$2,00,000$	10,000	10,000
Insurance of machinery	Value machinery of $(12: 16: 20: 1: 1)$	$2,00,000$	48,000	64,000	80,000	4,000	4,000
		$50,12,500$	$14,74,250$	$11,05,250$	$16,07,083$	$6,46,292$	$1,79,625$

Overheads of service cost centres:
Let S_{1} be the overhead of service cost centre S_{1} and S_{2} be the overhead of service cost centre S_{2}.
$S_{1}=6,46,292+0.10 S_{2}$
$S_{2}=1,79,625+0.10 S_{1}$
Substituting the value of S_{2} in S_{1} we get
$S_{1}=6,46,292+0.10\left(1,79,625+0.10 S_{1}\right)$
$S_{1}=6,46,292+17,962.5+0.01 S_{1}$
$0.99 S_{1}=6,64,254.5$
$\therefore \mathrm{S}_{1}=₹ 6,70,964$
$\therefore \mathrm{S}_{2}=1,79,625+0.10 \times 6,70,964$
= ₹ $2,46,721.4$
Secondary Distribution Summary

Particulars	Total (₹)	$\mathbf{P}_{1}(₹)$	$\mathbf{P}_{2}(₹)$	$\mathbf{P}_{3}(₹)$
Allocated overheads as per primary distribution	$41,86,583$	$14,74,250$	$11,05,250$	$16,07,083$
	$\mathrm{~S}_{1}$	$6,70,964$	$1,34,192.8$	$2,01,289.2$

S_{2}	$2,46,721.4$	$98,688.6$	$49,344.3$	$74,016.5$
		$17,07,131.4$	$13,55,883.5$	$19,49,485.1$

(i) Overhead rate per hour

	$\boldsymbol{P}_{\mathbf{1}}$	$\boldsymbol{P}_{\mathbf{2}}$	$\boldsymbol{P}_{\mathbf{3}}$
Total overheads cost (₹)	$17,07,131.4$	$13,55,883.5$	$19,49,485.1$
Production hours worked	6,225	4,050	4,100
Rate per hour $(₹)$	274.24	334.79	475.48

(ii) Cost of Product X

	(₹)
Direct material	$6,250.00$
Direct labour	$3,750.00$
Prime cost	$10,000.00$
Production on overheads	
$\mathrm{P}_{1} \quad 5$ hours $\times ₹ 274.24=1,371.20$	
$\mathrm{P}_{2} \quad 3$ hours $\times ₹ 334.79=1,004.37$	
$\mathrm{P}_{3} \quad 4$ hours $\times ₹ 475.48=\underline{1,901.92}$	$4,277.49$
Factory cost	$14,277.49$

4. Working notes:
(i) Total support cost:

	(₹)
Bottles returns	60,000
Ordering	$7,80,000$
Delivery	$12,60,000$
Shelf stocking	$8,64,000$
Customer support	$15,36,000$
Total support cost	$45,00,000$

(ii) Cost for each activity cost driver:

Activity (1)	Total cost (₹) (2)	Cost allocation base (3)	Cost driver rate (4) $=[(\mathbf{2}) \div(\mathbf{3})]$
Ordering	$7,80,000$	$1,560 \quad$ purchase orders	$₹ 500$ per purchase order

| Delivery | $12,60,000$ | 3,150 deliveries | $₹ 400$ per delivery |
| :--- | ---: | ---: | :--- | :--- |
| Shelf-stocking | $8,64,000$ | 8,640 hours | $₹ 100$ per stocking
 hour |
| Customer
 support | $15,36,000$ | $15,36,000$ items sold | $₹ 1$ per item sold |

Statement of Total cost and Operating income

	Soft drinks (₹)	Fresh Produce (₹)	Packaged Food (₹)	Total (₹)
Revenues: (A)	39,67,500	1,05,03,000	60,49,500	2,05,20,000
Cost \& Goods sold	30,00,000	75,00,000	45,00,000	1,50,00,000
Bottle return costs	60,000	0	0	60,000
$\begin{aligned} & \text { Ordering cost* } \\ & (360: 840: 360) \end{aligned}$	1,80,000	4,20,000	1,80,000	7,80,000
$\begin{aligned} & \text { Delivery cost** } \\ & (300: 2190: 660) \end{aligned}$	1,20,000	8,76,000	2,64,000	12,60,000
Shelf stocking cost* (540:5400:2700)	54,000	5,40,000	2,70,000	8,64,000
Customer Support cost* (1,26,000:11,04,000:3,06,000)	1,26,000	11,04,000	3,06,000	15,36,000
Total cost: (B)	35,40,000	1,04,40,000	55,20,000	1,95,00,000
Operating income C:\{(A)- (B) \}	4,27,500	63,000	5,29,500	10,20,000

* Refer to working note (ii)

5. Calculation of Cost of Production of Arnav Metallic Ltd. for the period.....

Particulars	Amount (₹)
Raw materials purchased	$64,00,000$
Add: Opening stock	$2,88,000$
Less: Closing stock	$(4,46,000)$
Material consumed	$62,42,000$
Wages paid	$23,20,000$
	Prime cost
Repair and maintenance cost of plant \& machinery	$85,62,000$
	$9,80,500$

Insurance premium paid for plant \& machinery	96,000
Quality control cost	86,000
Research \& development cost	92,600
Administrative overheads related with factory and production	$9,00,000$
	$1,07,17,100$
Add: Opening value of W-I-P	$4,06,000$
Less: Closing value of W-I-P	$(6,02,100)$
	$1,05,21,000$
Less: Amount realised by selling scrap	$(9,200)$
Add: Primary packing cost	10,200
Cost of Production	$1,05,22,000$

Notes:

(i) Other administrative overhead does not form part of cost of production.
(ii) Salary paid to Director (Technical) is an administrative cost.
6.

Cost Ledger Control Account

Particulars	$\mathbf{(₹)}$	Particulars	$(₹)$
To Stores Ledger control A/c	$1,30,000$	By Balance b/d	$68,50,000$
To Costing Profit \& Loss A/c	$17,10,000$	By Stores Ledger control A/c	$12,50,000$
To Balance c/d	$77,10,000$	By Wages Control A/c Manufacturing overhead control A/c	$8,00,000$
	$95,50,000$		$95,50,000$

Store Ledger Control Account

Particulars	(₹)	Particulars	(₹)
To Balance b/d	$30,00,000$	By WIP Control A/c	$13,50,000$
To Cost Ledger control A/c	$12,50,000$	By Cost Ledger control A/c (return)	$1,30,000$
		By Balance c/d	$27,70,000$
	$42,50,000$		$42,50,000$

WIP Control Account

Particulars	(₹)	Particulars	(₹)
To Balance b/d	$15,00,000$	By Finished Stock Control A/c	$22,50,000$
To Wages Control A/c	$4,00,000$		
To Stores Ledger control A/c	$13,50,000$		$18,50,000$
To Manufacturing overhead control A/c	$8,50,000$	By Balance c/d	$41,00,000$
	$41,00,000$		

Finished Stock Control Account

Particulars	(₹)	Particulars	(₹)
To Balance b/d	$25,00,000$	By Cost of Sales A/c	$17,50,000$
To WIP Control A/c	$22,50,000$		$30,90,000$
To Cost of Sales A/c (sales return)	90,000	By Balance c/d	$48,40,000$

Manufacturing Overhead Control Account

Particulars	(₹)	Particulars	(₹)
To Cost Ledger Control A/c	$8,50,000$	By Balance b/d	$1,50,000$
To Wages Control A/c	$2,00,000$	By WIP Control A/c	$8,50,000$
		By Costing P\&L A/c (under recovery)	50,000
	$10,50,000$		$10,50,000$

Wages Control Account

Particulars	(₹)	Particulars	(₹)
To Cost Ledger Control A/c	$6,00,000$	By WIP Control A/c	$4,00,000$
		By Manufacturing overhead control A/c	$2,00,000$
	$6,00,000$		$6,00,000$

Cost of Sales Account

Particulars	(₹)	Particulars	(₹)
To Finished Stock Control A/c	$17,50,000$	By Finished Stock Control A/c (sales return)	90,000

		By Costing Profit \& Loss A/c	$16,60,000$
	$17,50,000$		$17,50,000$

Trial Balance

Particulars	Dr.	Cr.
	(₹)	(₹)
Stores Ledger Control A/c	$27,70,000$	
WIP Control A/c	$18,50,000$	
Finished Goods Control A/c	$30,90,000$	
Cost Ledger Control A/c		$77,10,000$
	$77,10,000$	$77,10,000$

Working:

Costing P\&L Account

Particulars	(₹)	Particulars	(₹)
To Cost of Sales A/c	$16,60,000$	By Cost Ledger control A/c	$17,10,000$
To Manufacturing overhead control A/c	50,000		
	$17,10,000$		$17,10,000$

7. (i)

Production Statement
For the year ended $31^{\text {st }}$ March, 2020

		Amount (₹)
Direct materials		18,00,000
Direct wages	Prime Cost	15,00,000
		33,00,000
Factory overheads	Cost of Production	9,00,000
		42,00,000
Administration overheads		8,40,000
Selling and distribution overheads	Cost of Sales	10,50,000
		60,90,000
Profit		12,18,000
	Sales value	73,08,000

Calculation of Rates:

1. Percentage of factory overheads to direct wages $=\frac{₹ 9,00,000}{₹ 15,00,000} \times 100=60 \%$
2. Percentage of administration overheads to Cost of production

$$
=\frac{₹ 8,40,000}{₹ 42,00,000} \times 100=20 \%
$$

3. Selling and distribution overheads $=₹ 10,50,000 \times 115 \%=₹ 12,07,500$

Selling and distribution overhead \% to Cost of production
$=\frac{₹ 12,07,500}{₹ 42,00,000} \times 100=28.75 \%$
4. Percentage of profit to sales $=\frac{₹ 12,18,000}{₹ 73,08,000} \times 100=16.67 \%$ or, $1 / 6$
(ii) Calculation of price for the job received in 2019-20

	Amount (₹)
Direct materials	4,80,000
Direct wages	3,00,000
Prime Cost	7,80,000
Factory overheads (60% of $₹ 3,00,000$)	1,80,000
Cost of Production	9,60,000
Administration overheads (20\% of ₹9,60,000)	1,92,000
Selling and distribution overheads (28.75\% of ₹ $9,60,000)$	2,76,000
Cost of Sales	14,28,000
Profit (1/5 of ₹ $14,28,000$)	2,85,600
Sales value	17,13,600

8. (i) Calculation of Raw Material inputs during the month:

Quantities Entering Process	Litres	Quantities Leaving Process	Litres
Opening WIP	1,600	Transfer to Finished Goods	8,400
Raw material input (balancing figure)	8,320	Process Losses	1,200
	9,920		320

(ii) Calculation of Normal Loss and Abnormal Loss/Gain

	Litres
Total process losses for month	1,200
Normal Loss (10\% input)	832
Abnormal Loss (balancing figure)	368

(iii) Calculation of values of Raw Material, Labour and Overheads added to the process:

	Material	Labour	Overheads
Cost per equivalent unit	$₹ 46.00$	$₹ 14.00$	$₹ 18.00$
Equivalent units (litre) (refer the working note)	7,488	7,744	7,872
Cost of equivalent units	$₹ 3,44,448$	$₹ 1,08,416$	$₹ 1,41,696$
Add: Scrap value of normal loss (832 units $\times ₹ 15$)	$₹ 12,480$	--	--
Total value added	$₹ 3,56,928$	$₹ 1,08,416$	$₹ 1,41,696$

Workings:

Statement of Equivalent Units (litre):

Input Details	Units	Output details	Units	Equivalent Production					
				Material		Labour		Overheads	
				Units	(\%)	Units	(\%)	Units	(\%)
Opening WIP	1,600	Units completed:							
Units introduced	8,320	- Opening WIP	1,600	--	--	480	30	640	40
		Fresh inputs	6,800	6,800	100	6,800	100	6,800	100
		Normal loss	832	--	--	--	--	--	--
		Abnormal loss	368	368	100	368	100	368	100
		Closing WIP	320	320	100	96	30	64	20
	9,920		9,920	7,488		7,744		7,872	

(iv)

Process Account for the month

	Litres	Amount (₹)		Litres	Amount (₹)
To Opening WIP	1,600	1,06,560	By Finished goods [8400 x ₹ 78$]$	8,400	6,55,200
To Raw Materials	8,320	3,56,928	By Normal loss [832 x ₹ 15]	832	12,480
To Wages	--	1,08,416	By Abnormal loss [368 x ₹ 78]	368	28,704
To Overheads	--	1,41,696	$\begin{aligned} & \text { By Closing WIP } \\ & {[(320 \times ₹ 46)+(320} \\ & x .30 \times ₹ 14)+(320 \\ & x .20 \times ₹ 18)] \end{aligned}$	320	17,216
	9,920	7,13,600		9,920	7,13,600

9. Calculation of Cost per annum

Particulars	Arts (₹)	Commerce $(₹)$	Science $(₹)$	Total (₹)
Teachers' salary (W.N-1)	$16,80,000$	$21,00,000$	$25,20,000$	$63,00,000$
Re-apportionment of Economics	$(84,000)$	$1,45,091$	$(61,091)$	-
\& Mathematics teachers' salary				
(W.N-2)	$1,24,800$	$1,87,200$	$2,88,000$	$6,00,000$
Principal's salary (W.N-3)	-	-	$1,72,800$	$1,72,800$
Lab assistants' salary (W.N-4)	43,200	28,800	57,600	$1,29,600$
Salary to library staff (W.N-5)	31,636	94,909	47,455	$1,74,000$
Salary to peons (W.N-6)	38,400	$1,15,200$	57,600	$2,11,200$
Salary to other staffs (W.N-7)	86,400	$2,59,200$	$1,29,600$	$4,75,200$
Examination expenses (W.N- 8)	$1,21,600$	$3,64,800$	$1,82,400$	$6,68,800$
Office \& Administration expenses				
(W.N-7)	36,000	$1,08,000$	54,000	$1,98,000$
Annual Day expenses (W.N-7)	9,600	28,800	14,400	52,800
Sports expenses (W.N- 7)	$20,87,636$	$34,32,000$	$34,62,764$	$89,82,400$
Total Cost per annum				

(a) Calculation of cost per student per annum

Particulars	Arts (₹)	Commerce (₹)	Science $(₹)$	Total (₹)
Total Cost per annum	$20,87,636$	$34,32,000$	$34,62,764$	$89,82,400$
No. of students Cost per student per annum	120	360	180	660

(b) Calculation of profitability

Particulars	Arts (₹)	Commerce (₹)	Science (₹)	Total (₹)
Total Fees per annum	12,000	12,000	12,000	
Cost per student per	17,397	9,533	19,238	
annum				
Profit// (Loss) per student per annum	$(5,397)$	2,467	$(7,238)$	
No. of students Total Profit/ (Loss)	120	360	180	
	$(6,47,640)$	$8,88,120$	$(13,02,840)$	$(10,62,360)$

(c) Computation of fees to be charged to earn a 10\% profit on cost

Particulars	Arts (₹)	Commerce $(₹)$	Science (₹)
Cost per student per annum	17,397	9,533	19,238
Add: Profit @10\%	1,740	953	1,924
Fees per annum	19,137	10,486	21,162
Fees per month	1,595	874	1,764

Working Notes:

(1) Teachers' salary

Particulars	Arts	Commerce	Science
No. of teachers	4	5	6
Salary per annum (₹)	$4,20,000$	$4,20,000$	$4,20,000$
Total salary	$16,80,000$	$21,00,000$	$25,20,000$

(2) Re-apportionment of Economics and Mathematics teachers' salary

	Economics		Mathematics	
Particulars	Arts	Commerce	Science	Commerce
No. of classes	832	208	940	160
Salary re-apportionment (₹)	$(84,000)$	84,000	$(61,091)$	61,091
	$\left(\frac{₹ 4,20,000}{1,040} \times 208\right)$		$\left(\frac{₹ 4,20,000}{1,100} \times 160\right)$	

Total addition to Commerce stream $=₹ 84,000+₹ 61,091=₹ 1,45,091$
(3) Principal's salary has been apportioned on the basis of time spent by him for administration of classes.
(4) Lab attendants' salary has been apportioned on the basis of lab classes attended by the students.
(5) Salary of library staffs are apportioned on the basis of time spent by the students in library.
(6) Salary of Peons are apportioned on the basis of number of students. The peons' salary allocable to higher secondary classes is calculated as below:

	Amount (₹)
Peon dedicated for higher secondary	$1,20,000$
$(1$ peon \times ₹ $10,000 \times 12$ months)	54,000
Add: 15% of other peons' salary	
$\{15 \%$ of (3 peons $\times ₹ 10,000 \times 12$ months) $\}$	$1,74,000$

(7) Salary to other staffs, office \& administration cost, Annual day expenses and sports expenses are apportioned on the basis of number of students.
(8) Examination Expenses has been apportioned taking number of students and number of examinations into account.
10. Material Variances:

Material	$\begin{gathered} \text { SQ } \\ (W N-1) \end{gathered}$	SP (₹)	$\begin{gathered} S Q \times S P \\ (₹) \end{gathered}$	$\begin{gathered} \text { RSQ } \\ \text { (WN-2) } \end{gathered}$	$R S Q \times S P$ (₹)	AQ	$A Q \times S P$ (₹)	AP (₹)	$A Q \times A P$ (₹)
A	940 kg .	90.00	84,600	886 kg .	79,740	900 kg .	81,000	86.00	77,400
B	705 kg .	60.00	42,300	664 kg .	39,840	650 kg .	39,000	65.00	42,250
	1645 kg		1,26,900	1550 kg	1,19,580	1550 kg	1,20,000		1,19,650

WN-1: Standard Quantity (SQ):
Material A- $\quad\left(\frac{800 \mathrm{~kg} .}{0.9 \times 1,400 \mathrm{~kg} .} \times 1,480 \mathrm{~kg}.\right)=939.68$ or 940 kg .
Material B- $\quad\left(\frac{600 \mathrm{~kg} .}{0.9 \times 1,400 \mathrm{~kg} .} \times 1,480 \mathrm{~kg}.\right)=704.76$ or 705 kg .
WN- 2: Revised Standard Quantity (RSQ):
Material A- $\quad\left(\frac{800 \mathrm{~kg} .}{1,400 \mathrm{~kg} .} \times 1,550 \mathrm{~kg}.\right)=885.71$ or 886 kg .
Material B- $\left(\frac{600 \mathrm{~kg} .}{1,400 \mathrm{~kg} .} \times 1,550 \mathrm{~kg}.\right)=664.28$ or 664 kg .
(a) Material Cost Variance $(A+B) \quad=\{(S Q \times S P)-(A Q \times A P)\}$

$$
=\{1,26,900-1,19,650\}=7,250(F)
$$

(b) Material Price Variance $(A+B)=\{(A Q \times S P)-(A Q \times A P)$

$$
=\{1,20,000-1,19,650\}=350(F)
$$

(c) Material Mix Variance $(\mathrm{A}+\mathrm{B})$ $=\{(R S Q \times S P)-(A Q \times S P)\}$ $=\{1,19,580-1,20,000\}=420(A)$
(d) Material Yield Variance $(A+B)=\{(S Q \times S P)-(R S Q \times S P)\}$

$$
=\{1,26,900-1,19,580\}=7,320(\mathrm{~F})
$$

Labour Variances:

Labour	SH $($ WN-3 $)$	SR (₹)	SH \times SR (₹)	RSH (WN-4)	RSH \times SR $(₹)$	AH	AH \times SR $(₹)$	AR $(₹)$	AH \times AR $(₹)$
Skilled	1,116 hrs	75.00	83,700	1144	85,800	1,200	90,000	71.00	85,200
Unskilled	893 hrs	44.00	39,292	916	40,304	860	37,840	46.00	39,560
	2,009 hrs		$1,22,992$	2,060	$1,26,104$	2,060	$1,27,840$		$1,24,760$

WN- 3: Standard Hours (SH):
Skilled labour- $\left(\frac{0.95 \times 1,000 \mathrm{hr}}{0.90 \times 1,400 \mathrm{~kg} .} \times 1,480 \mathrm{~kg}.\right)=1,115.87$ or $1,116 \mathrm{hrs}$.
Unskilled labour- $\left(\frac{0.95 \times 800 \mathrm{hr} .}{0.90 \times 1,400 \mathrm{~kg} .} \times 1,480 \mathrm{~kg}.\right)=892.69$ or 893 hrs .

WN- 4: Revised Standard Hours (RSH):

Skilled labour- $\left(\frac{1,000 \mathrm{hr} .}{1,800 \mathrm{hr} .} \times 2,060 \mathrm{hr}.\right)=1,144.44$ or $1,144 \mathrm{hrs}$.
Unskilled labour- $\left(\frac{800 \mathrm{hr} .}{1,800 \mathrm{hr} .} \times 2,060 \mathrm{hr}.\right)=915.56$ or 916 hrs .
(e) Labour Cost Variance (Skilled + Unskilled) $=\{(\mathrm{SH} \times \mathrm{SR})-(\mathrm{AH} \times \mathrm{AR})\}$

$$
=\{1,22,992-1,24,760\}=1,768(\mathrm{~A})
$$

(f) Labour Efficiency Variance (Skilled + Unskilled) $=\{(\mathrm{SH} \times \mathrm{SR})-(\mathrm{AH} \times \mathrm{SR})\}$

$$
=\{1,22,992-1,27,840\}=4,848 \text { (A) }
$$

(g) Labour Yield Variance (Skilled + Unskilled) $=\{(\mathrm{SH} \times \mathrm{SR})-(\mathrm{RSH} \times \mathrm{SR})\}$

$$
=\{1,22,992-1,26,104\}=3,112(\mathrm{~A})
$$

11. Working Notes:

(1) Calculation of Cost of Goods Sold (COGS):

COGS $=D M+D L+F O H+A O H$
COGS $=\{0.3$ COGS +0.15 COGS $+(0.10$ COGS $+₹ 2,30,000)+$ (0.02 COGS + ₹ 71,000)\}

Or, COGS = 0.57 COGS + ₹ $3,01,000$
Or, COGS $=\frac{₹ 3,01,000}{0.43}=₹ 7,00,000$
(2) Calculation of Cost of Sales (COS):

COS	$=$ COGS + S\&DOH
COS	$=\operatorname{COGS}+(0.04 \mathrm{COS}+₹ 68,000)$
Or, \cos	$=₹ 7,00,000+(0.04 \operatorname{COS}+₹ 68,000)$
Or, \cos	$=\frac{₹ 7,68,000}{0.96}=₹ 8,00,000$

(3) Calculation of Variable Costs:

Direct Material-	$(0.30 \times ₹ 7,00,000)$	$₹ 2,10,000$
Direct Labour-	$(0.15 \times ₹ 7,00,000)$	$₹ 1,05,000$
Factory Overhead-	$(0.10 \times ₹ 7,00,000)$	$₹ 70,000$
Administration OH-	$(0.02 \times ₹ 7,00,000)$	$₹ 14,000$
Selling \& Distribution OH	$(0.04 \times ₹ 8,00,000)$	$₹ 32,000$
		$₹ 4,31,000$

(4) Calculation of total Fixed Costs:

Factory Overhead- ₹ $2,30,000$
Administration OH-
Selling \& Distribution OH
(5) Calculation of P/V Ratio:

$$
\begin{aligned}
\text { P/V Ratio } & =\frac{\text { Contribution }}{\text { Sales }} \times 100=\frac{\text { Sales }- \text { VariableCosts }}{\text { Sales }} \times 100 \\
& =\frac{(₹ 185 \times 5,000 \text { units })-₹ 4,31,000}{₹ 185 \times 5,000 \text { units }} \times 100=53.41 \%
\end{aligned}
$$

(i) Break-Even Sales
$=\frac{\text { FixedCosts }}{\text { P/VRatio }}=\frac{₹ 3,69,000}{53.41 \%}=₹ 6,90,882$
(ii) Profit earned during the last year
$=$ (Sales - Total Variable Costs) - Total Fixed Costs
$=(₹ 9,25,000-₹ 4,31,000)-₹ 3,69,000$
= ₹ $1,25,000$
(iii) Margin of Safety (\%)
$=\frac{\text { Sales }- \text { Breakeven sales }}{\text { Sales }} \times 100$
$=\frac{₹ 9,25,000-₹ 6,90,882}{₹ 9,25,000} \times 100=25.31 \%$
(iv) Profit if the sales were 10% less than the actual sales:

$$
\begin{aligned}
\text { Profit } & =90 \%(₹ 9,25,000-₹ 4,31,000)-₹ 3,69,000 \\
& =₹ 4,44,600-₹ 3,69,000=₹ 75,600
\end{aligned}
$$

12. (i) Preparation of Production Budget (in units)

	October	November	December	January
Demand for the month (Nos.)	40,000	35,000	45,000	60,000
Add: 20\% of next month's demand	7,000	9,000	12,000	13,000
Less: Opening Stock	$(9,500)$	$(7,000)$	$(9,000)$	$(12,000)$
Vehicles to be produced	37,500	37,000	48,000	61,000

(ii) Preparation of Purchase budget for Part-X

	October	November	December
Production for the month (Nos.)	37,500	37,000	48,000
Add: 40\% of next month's production	$\begin{array}{r} 14,800 \\ (40 \% \text { of } 37,000) \end{array}$	$\begin{array}{r} 19,200 \\ (40 \% \text { of } 48,000) \\ \hline \end{array}$	$\begin{array}{r} 24,400 \\ (40 \% \text { of } 61,000) \\ \hline \end{array}$
	52,300	56,200	72,400
No. of units required for production	$\begin{array}{r} 2,09,200 \\ (52,300 \times 4 \text { units }) \end{array}$	$\begin{array}{r} 2,24,800 \\ (56,200 \times 4 \text { units }) \end{array}$	$\begin{array}{r} 2,89,600 \\ (72,400 \times 4 \text { units }) \end{array}$
Less: Opening Stock	$(48,000)$	$\begin{array}{r} (59,200) \\ (14,800 \times 4 \text { units }) \end{array}$	$\begin{array}{r} (76,800) \\ (19,200 \times 4 \text { units }) \end{array}$
No. of units to be purchased	1,61,200	1,65,600	2,12,800

(iii) Budgeted Gross Profit for the Quarter October to December

	October	November	December	Total
Sales in nos.	40,000	35,000	45,000	1,20,000
Net Selling Price per unit* (₹)	14,57,070	14,57,070	14,57,070	
Sales Revenue ($₹$ in lakh)	5,82,828	5,09,974.50	6,55,681.50	17,48,484
Less: Cost of Sales (₹ in lakh) (Sales unit \times Cost per unit)	4,57,120	3,99,980	5,14,260	13,71,360
Gross Profit (₹ in lakh)	1,25,708	1,09,994.50	1,41,421.50	3,77,124

* Net Selling price unit $=₹ 17,14,200$ - 15% commission on ₹17,14,200 $=₹ 14,57,070$.

13. (a) Difference between Cost Accounting and Management Accounting

	Basis	Cost Accounting	Management Accounting
(i)	Nature	It records the quantitative aspect only.	It records both qualitative and quantitative aspect.
(ii)	Objective	It records the cost of producing a product and providing a service.	It Provides information to management for planning and co-ordination.
(iii)	Area	It only deals with cost Ascertainment.	It is wider in scope as it includes financial accounting, budgeting, taxation, planning etc.
(iv)	Recording of data	It uses both past and present figures.	It is focused with the projection of figures for future.

(v)	Development	Its development is related to industrial revolution.	It develops in accordance to the need of modern business world.
(vi)	Rules and Regulation	It follows certain principles and procedures for recording costs of different products.	It does not follow any specific rules and regulations.

(b) The impact of IT in cost accounting system may include the following:
(i) After the introduction of ERPs, different functional activities get integrated and as a consequence a single entry into the accounting system provides custom made reports for every purpose and saves an organisation from preparing different sets of documents. Reconciliation process of results of both cost and financial accounting systems become simpler and less sophisticated.
(ii) A move towards paperless environment can be seen where documents like Bill of Material, Material Requisition Note, Goods Received Note, labour utilisation report etc. are no longer required to be prepared in multiple copies, the related department can get e-copy from the system.
(iii) Information Technology with the help of internet (including intranet and extranet) helps in resource procurement and mobilisation. For example, production department can get materials from the stores without issuing material requisition note physically. Similarly, purchase orders can be initiated to the suppliers with the help of extranet. This enables an entity to shift towards Just-in-Time (JIT) approach of inventory management and production.
(iv) Cost information for a cost centre or cost object is ascertained with accuracy in timely manner. Each cost centre and cost object is codified and all related costs are assigned to the cost object or cost centre. This process automates the cost accumulation and ascertainment process. The cost information can be customised as per the requirement. For example, when an entity manufacture or provide services, it can know information job-wise, batch-wise, process-wise, cost centre wise etc.
(v) Uniformity in preparation of report, budgets and standards can be achieved with the help of IT. ERP software plays an important role in bringing uniformity irrespective of location, currency, language and regulations.
(vi) Cost and revenue variance reports are generated in real time basis which enables the management to take control measures immediately.
(vii) IT enables an entity to monitor and analyse each process of manufacturing or service activity closely to eliminate non value added activities.

The above are examples of few areas where Cost Accounting is done with the help of IT.
(c) Escalation clause in a contract empowers a contractor to revise the price of the contract in case of increase in the prices of inputs due to some macro-economic or other agreed reasons. A contract takes longer period to complete and the factors based on which price negotiation is done at the time of entering into the contract may change till the contract completes. This protect the contractor from adverse financial impacts and empowers the contractor to recover the increased prices. As per this clause, the contractor increases the contract price if the cost of materials, employees and other expenses increase beyond a certain limit. Inclusion of such a clause in a contract deed is called an "Escalation Clause".
(d) By-product cost can be dealt in cost accounting in the following ways:
(i) When they are of small total value: When the by-products are of small total value, the amount realised from their sale may be dealt in any one the following two ways:

1. The sales value of the by-products may be credited to the Costing Profit and Loss Account and no credit be given in the Cost Accounts. The credit to the Costing Profit and Loss Account here is treated either as miscellaneous income or as additional sales revenue.
2. The sale proceeds of the by-product may be treated as deductions from the total costs. The sale proceeds in fact should be deducted either from the production cost or from the cost of sales.
(ii) When the by-products are of considerable total value: Where by-products are of considerable total value, they may be regarded as joint products rather than as by-products. To determine exact cost of by-products the costs incurred upto the point of separation, should be apportioned over by-products and joint products by using a logical basis. In this case, the joint costs may be divided over joint products and by-products by using relative market values; physical output method (at the point of split off) or ultimate selling prices (if sold).
(iii) Where they require further processing: In this case, the net realisable value of the by-product at the split-off point may be arrived at by subtracting the further processing cost from the realisable value of by-products.
If total sales value of by-products at split-off point is small, it may be treated as per the provisions discussed above under (i).
In the contrary case, the amount realised from the sale of by-products will be considerable and thus it may be treated as discussed under (ii).
