PAPER - 3: COST AND MANAGEMENT ACCOUNTING QUESTIONS

Material Cost

1. A Ltd. produces a product ' X ' using a raw material ' D '. To produce one unit of $X, 4 \mathrm{~kg}$ of D is required. As per the sales forecast conducted by the company, it will be able to sale 20,000 units of X in the coming year.
The following are the information related to the raw material D :
(i) The Re-order quantity is 400 kg . less than the Economic Order Quantity (EOQ).
(ii) Maximum consumption per day is 40 kg . more than the average consumption per day.
(iii) There is an opening stock of $2,000 \mathrm{~kg}$.
(iv) Time required to get the raw materials from the suppliers is 4 to 8 days.
(v) The purchase price is ₹ 250 per kg .

There is an opening stock of 1,800 units of the finished product X.
The carrying cost of inventory is 14% p.a.
To place an order company has to incur ₹ 1,340 on paper and documentation work.
From the above information FIND OUT the followings in relation to raw material D:
(a) Re-order Quantity
(b) Maximum Stock level
(c) Minimum Stock level
(d) Calculate the impact on the profitability of the company by not ordering the EOQ.
[Take 300 days for a year]

Employee Cost

2. JBL Sisters operates a boutique which works for various fashion houses and retail stores. It has employed 26 workers and pays them on time rate basis. On an average an employee is allowed 8 hours for boutique work on a piece of garment. In the month of December 2020, two workers M and J were given 15 pieces and 21 pieces of garments respectively for boutique work. The following are the details of their work:

	\mathbf{M}	\mathbf{J}
Work assigned	15 pcs.	21 pcs.
Time taken	100 hours	140 hours

Workers are paid bonus as per Halsey System. The existing rate of wages is ₹ 60 per hour. As per the new wages agreement the workers will be paid ₹ 72 per hour w.e.f. $1^{\text {st }}$ January
2021. At the end of the month December 2020, the accountant of the company has wrongly calculated wages to these two workers taking ₹ 72 per hour.

Required:
(i) CALCULATE the loss incurred due to incorrect rate selection.
(ii) CALCULATE the loss incurred due to incorrect rate selection, had Rowan scheme of bonus payment followed.
(iii) CALCULATE the loss/ savings if Rowan scheme of bonus payment had followed.
(iv) DISCUSS the suitability of Rowan scheme of bonus payment for JBL Sisters?

Overheads: Absorption Costing Method

3. A manufacturing unit has purchased and installed a new machine at a cost of $₹ 24,90,000$ to its fleet of 5 existing machines. The new machine has an estimated life of 12 years and is expected to realise ₹ 90,000 as scrap value at the end of its working life.

Other relevant data are as follows:
(i) Budgeted working hours are 2,496 based on 8 hours per day for 312 days. Plant maintenance work is carried out on weekends when production is totally halted. The estimated maintenance hours are 416. During the production hours machine set-up and change over works are carried out. During the set-up hours no production is done. A total 312 hours are required for machine set-ups and change overs.
(ii) An estimated cost of maintenance of the machine is ₹ $2,40,000$ p.a.
(iii) The machine requires a component to be replaced every week at a cost of ₹ 2,400 .
(iv) There are three operators to control the operations of all the 6 machines. Each operator is paid ₹ 30,000 per month plus 20% fringe benefits.
(v) Electricity: During the production hours including set-up hours, the machine consumes 60 units per hour. During the maintenance the machine consumes only 10 units per hour. Rate of electricity per unit of consumption is ₹ 6 .
(vi) Departmental and general works overhead allocated to the operation during last year was ₹ $5,00,000$. During the current year it is estimated to increase by 10%.

Required:
COMPUTE the machine hour rate.

Activity Based Costing

4. The following budgeted information relates to N Ltd. for the year 2021:

	Products		
	\mathbf{X}	\mathbf{Y}	\mathbf{Z}
Production and Sales (units)	$1,00,000$	80,000	60,000
Selling price per unit	(₹)	(₹)	(₹)
Direct cost per unit	90	180	140
Machine department	50	90	95
(machine hours per unit)	Hours	Hours	Hours
Assembly department (direct labour hours per unit)	3	4	5

The estimated overhead expenses for the year 2021 will be as below:
Machine Department ₹ 73,60,000
Assembly Department ₹ $55,00,000$
Overhead expenses are apportioned to the products on the following basis:
Machine Department On the basis of machine hours
Assembly Department On the basis of labour hours
After a detailed study of the activities the following cost pools and their respective cost drivers are found:

Cost Pool	Amount (₹)	Cost Driver	Quantity
Machining services	$64,40,000$	Machine hours	$9,20,000$ hours
Assembly services	$44,00,000$	Direct labour hours	$11,00,000$ hours
Set-up costs	$9,00,000$	Machine set-ups	9,000 set-ups
Order processing	$7,20,000$	Customer orders	7,200 orders
Purchasing	$4,00,000$	Purchase orders	800 orders

As per an estimate the activities will be used by the three products:

	Products		
	\mathbf{X}	\mathbf{Y}	\mathbf{Z}
Machine set-ups	4,500	3,000	1,500

Customer orders	2,200	2,400	2,600
Purchase orders	300	350	150

You are required to PREPARE a product-wise profit statement using:
(i) Absorption costing method;
(ii) Activity-based method.

Cost Sheet

5. RTA Ltd. has the following expenditures for the year ended 31 st December, 2020:

Amount realized by selling of scrap and waste generated during manufacturing process ₹ $48,000 /$ -
From the above data you are requested to PREPARE Statement of Cost for RTA Ltd. for the year ended 31st December, 2020, showing (i) Prime cost, (ii) Factory cost, (iii) Cost of Production, (iv) Cost of goods sold and (v) Cost of sales.

Cost Accounting System

6. The financial books of a company reveal the following data for the year ended 31 st March, 2020:

	$(₹)$
Opening Stock:	
Finished goods 625 units	$1,06,250$
Work-in-process	92,000
01.04 .2019 to 31.03 .2020	$16,80,000$
Raw materials consumed	$12,20,000$
Direct Labour	$8,44,000$
Factory overheads	$3,96,000$
Administration overheads (production related)	$2,44,000$
Dividend paid	36,000
Bad Debts	$1,44,000$
Selling and Distribution Overheads	

Interest received	76,000
Rent received	92,000
Sales 12,615 units	$45,60,000$
Closing Stock: Finished goods 415 units	91,300
Work-n-process	82,400

The cost records provide as under:
> Factory overheads are absorbed at 70% of direct wages.
> Administration overheads are recovered at 15% of factory cost.
> Selling and distribution overheads are charged at ₹ 6 per unit sold.
> Opening Stock of finished goods is valued at ₹ 240 per unit.
> The company values work-in-process at factory cost for both Financial and Cost Profit Reporting.

Required:
(i) PREPARE statements for the year ended $31^{\text {st }}$ March, 2020 showing:
> the profit as per financial records
$>$ the profit as per costing records.
(ii) PREPARE a statement reconciling the profit as per costing records with the profit as per financial records.

Job Costing

7. SM Motors Ltd. is a manufacturer of auto components. Following are the details of expenses for the year 2019-20:
(i) Opening Stock of Material

15,00,000
(ii) Closing Stock of Material

20,00,000
(iii) Purchase of Material 1,80,50,000
(iv) Direct Labour 90,50,000
(v) Factory Overhead 30,80,000
(vi) Administrative Overhead

20,50,400
During the FY 2020-21, the company has received an order from a car manufacturer where it estimates that the cost of material and labour will be ₹ $80,00,000$ and ₹ $40,50,000$ respectively. The company charges factory overhead as a percentage of direct labour and administrative overheads as a percentage of factory cost based on previous year's cost.

Cost of delivery of the components at customer's premises is estimated at ₹ $4,50,000$.
You are required to:
(i) CALCULATE the overhead recovery rates based on actual costs for 2019-20.
(ii) PREPARE a Job cost sheet for the order received and the price to be quoted if the desired profit is 25% on sales.

Process Costing

8. A company produces a component, which passes through two processes. During the month of November, 2020, materials for 40,000 components were put into Process-I of which 30,000 were completed and transferred to Process- II. Those not transferred to Process- Il were 100% complete as to materials cost and 50% complete as to labour and overheads cost. The Process- I costs incurred were as follows:

$$
\begin{array}{ll}
\text { Direct Materials } & ₹ 3,00,000 \\
\text { Direct Wages } & ₹ 3,50,000 \\
\text { Factory Overheads } & \text { ₹ } 2,45,000
\end{array}
$$

Of those transferred to Process II, 28,000 units were completed and transferred to finished goods stores. There was a normal loss with no salvage value of 200 units in Process II. There were 1,800 units, remained unfinished in the process with 100% complete as to materials and 25% complete as regard to wages and overheads.
Costs incurred in Process-II are as follows:

Packing Materials	₹ 80,000
Direct Wages	₹ 71,125
Factory Overheads	₹ 85,350

Packing material cost is incurred at the end of the second process as protective packing to the completed units of production.
Required:
(i) PREPARE Statement of Equivalent Production, Cost per unit and Process I A/c.
(ii) PREPARE statement of Equivalent Production, Cost per unit and Process II A/c.

Service Costing

9. VPS is a public school having 25 buses each plying in different directions for the transport of its school students. In view of large number of students availing of the bus service, the buses work two shifts daily both in the morning and in the afternoon. The buses are garaged in the school. The workload of the students has been so arranged that in the morning, the first trip picks up senior students and the second trip plying an hour later picks
up junior students. Similarly, in the afternoon, the first trip takes the junior students and an hour later the second trip takes the senior students home.
The distance travelled by each bus, one way is 8 km . The school works 22 days in a month and remains closed for vacation in May and June. The bus fee, however, is payable by the students for all the 12 months in a year.
The details of expenses for a year are as under:

Driver's salary - payable for all the 12 in months
Cleaner's salary payable for all the 12 months
License fees, taxes etc.
Insurance Premium
Repairs and Maintenance
Purchase price of the bus
Life of the bus
Scrap value
Diesel Cost
₹ 12,000 per month per driver
₹ 8,000 per month per cleaner
₹ 8,400 per bus per annum
₹ 15,600 per bus per annum
₹ 20,500 per bus per annum
₹ $20,00,000$ each
16 years
₹ $1,60,000$
₹ 78.50 per litre

Each bus gives an average of 5 km . per litre of diesel. The seating capacity of each bus is 40 students.
The school follows differential transportation fees based on distance travelled as under:

Students picked up and dropped within the range of distance from the school	Transportation fee	Percentage of students availing this facility
2 km.	25% of Full	15%
4 km.	50% of Full	30%
8 km.	Full	55%

Due to a pandemic, lockdown imposed on schools and the school remained closed from April 2020 to December 2020. Drivers and cleaners were paid 75% of their salary during the lockdown period. Repairing cost reduced to 75% for the year 2020.
Ignore the interest cost.
Required:
(i) PREPARE a statement showing the expenses of operating a single bus and the fleet of 25 buses for a year.
(ii) FIND OUT transportation fee per student per month in respect of:
(a) Students coming from a distance of upto 2 km . from the school.
(b) Students coming from a distance of upto 4 km . from the school; and
(c) Students coming from a distance of upto 8 km . from the school.
(iii) CALCULATE the minimum bus fare that has to be recovered from the students for the year 2020 .

Standard Costing

10. LM Limited produces a product 'SX4' which is sold in a 10 Kg . packet. The standard cost card per packet of 'SX4' is as follows:

Direct materials 10 kg @ ₹ 90 per kg 900
Direct labour 8 hours @ ₹ 80 per hour 640
Variable Overhead 8 hours @ ₹ 20 per hour 160
Fixed Overhead $\underline{\underline{250}}$
1,950
Budgeted output for a quarter of a year was $10,000 \mathrm{Kg}$. Actual output is $9,000 \mathrm{Kg}$.
Actual costs for this quarter are as follows:

Direct Materials $8,900 \mathrm{Kg}$ @ ₹ 92 per Kg. 8, 18,800
Direct Labour 7,000 hours @ ₹ 84 per hour 5,88,000
Variable Overhead incurred 1,40,000
Fixed Overhead incurred 2,60,000
You are required to CALCULATE:
(i) Material Usage Variance
(ii) Material Price Variance
(iii) Material Cost Variance
(iv) Labour Efficiency Variance
(v) Labour Rate Variance
(vi) Labour Cost Variance
(vii) Variable Overhead Cost Variance
(viii) Fixed Overhead Cost Variance

Marginal Costing (Short- term Decision making)

11. Aditya Limited manufactures three different products and the following information has been collected from the books of accounts:

	Products		
	S	T	U
Sales Mix	35\%	35\%	30\%
Selling Price	₹ 300	₹ 400	₹ 200
Variable Cost	₹ 150	₹ 200	₹ 120
Total Fixed Costs			₹ 18,00,000
Total Sales			₹ $60,00,000$

The company has currently under discussion, a proposal to discontinue the manufacture of Product U and replace it with Product M , when the following results are anticipated:

	Products			
	S	T	M	
Sales Mix	50%	25%	25%	
Selling Price	$₹ 300$	$₹ 400$	$₹ 300$	
Variable Cost	$₹ 150$	$₹ 200$	$₹ 150$	
Total Fixed Costs	₹ $18,00,000$ Total Sales ₹ $64,00,000$			

Required

(i) COMPUTE the PV ratio, total contribution, profit and Break-even sales for the existing product mix.
(ii) COMPUTE the PV ratio, total contribution, profit and Break-even sales for the proposed product mix.

Budget and Budgetary Control

12. RS Ltd manufactures and sells a single product and has estimated sales revenue of ₹ 302.4 lakh during the year based on 20% profit on selling price. Each unit of product requires 6 kg of material A and 3 kg of material B and processing time of 4 hours in machine shop and 2 hours in assembly shop. Factory overheads are absorbed at a blanket rate of 20% of direct labour. Variable selling \& distribution overheads are ₹ 60 per unit sold and fixed selling \& distribution overheads are estimated to be ₹ $69,12,000$.
The other relevant details are as under:

Purchase Price:	Material A	₹ 160 per kg
	Materials B	₹ 100 per kg
Labour Rate:	Machine Shop	₹ 140 per hour
	Assembly Shop	₹ 70 per hour

	Finished Stock	Material A	Material B
Opening Stock	2,500 units	$7,500 \mathrm{~kg}$	$4,000 \mathrm{~kg}$
Closing Stock	3,000 units	$8,000 \mathrm{~kg}$	$5,500 \mathrm{~kg}$

Required:
(i) CALCULATE number of units of product proposed to be sold and selling price per unit,
(ii) PREPARE Production Budget in units, and
(iii) PREPARE Material Purchase Budget in units.

Miscellaneous

13. (a) WRITE note on cost-plus-contracts.
(b) HOW apportionment of joint costs upto the point of separation amongst the joint products using market value at the point of separation and net realizable value method is done? DISCUSS.
(c) DISCUSS cost classification based on variability and controllability.
(d) DESCRIBE the salient features of budget manual.

SUGGESTED HINTS/ANSWERS

1. Working Notes:
(i) Computation of Annual consumption \& Annual Demand for raw material ' D ':

Sales forecast of the product ' X '	20,000 units
Less: Opening stock of ' X '	1,800 units
Fresh units of ' X ' to be produced	18,200 units
Raw material required to produce 18,200 units of ' X '	$72,800 \mathrm{~kg}$.
$(18,200$ units $\times 4 \mathrm{~kg})$.	
Less: Opening Stock of ' D '	$2,000 \mathrm{~kg}$.
Annual demand for raw material ' D '	$70,800 \mathrm{~kg}$.

(ii) Computation of Economic Order Quantity (EOQ):
$\mathrm{EOQ}=\sqrt{\frac{2 \times \text { Annualdemand of 'D' } \times \text { Ordering cost }}{\text { Carrying cost per unit per annum }}}$

$$
=\sqrt{\frac{2 \times 70,800 \mathrm{~kg} . \times ₹ 1,340}{₹ 250 \times 14 \%}}=\sqrt{\frac{2 \times 70,800 \mathrm{~kg} \cdot \times ₹ 1,340}{₹ 35}}=2,328 \mathrm{~kg} .
$$

(iii) Re - Order level:

$$
\begin{aligned}
& =(\text { Maximum consumption per day } \times \text { Maximum lead time }) \\
& =\left\{\left(\frac{\text { Annual Consumptionof 'D' }}{300 \text { days }}+40 \mathrm{~kg} .\right) \times 8 \text { days }\right\} \\
& =\left\{\left(\frac{70,800 \mathrm{~kg} .}{300 \text { days }}+40 \mathrm{~kg} .\right) \times 8 \text { days }\right\}=2,208 \mathrm{~kg} .
\end{aligned}
$$

(iv) Minimum consumption per day of raw material ' D ':

Average Consumption per day $\quad=236 \mathrm{Kg}$.
Hence, Maximum Consumption per day $=236 \mathrm{~kg} .+40 \mathrm{~kg} .=276 \mathrm{~kg}$.
So Minimum consumption per day will be
Average Consumption $=\frac{\text { Min.consumption+Max.consumption }}{2}$
Or, 236 kg .
Or, Min. consumption

$$
\begin{aligned}
& =\frac{\text { Min. consumption }+276 \mathrm{~kg} .}{2} \\
& =472 \mathrm{~kg}-276 \mathrm{~kg} .=196 \mathrm{~kg} .
\end{aligned}
$$

(a) Re -order Quantity :

EOQ $-400 \mathrm{~kg} .=2,328 \mathrm{~kg} .-400 \mathrm{~kg} .=1,928 \mathrm{~kg}$.
(b) Maximum Stock level:
$=$ Re-order level + Re-order Quantity - (Min. consumption per day \times Min. lead time)
$=2,208 \mathrm{~kg} .+1,928 \mathrm{~kg} .-(196 \mathrm{~kg} . \times 4$ days $)=4,136 \mathrm{~kg} .-784 \mathrm{~kg} .=3,352 \mathrm{~kg}$.
(c) Minimum Stock level:
$=$ Re-order level - (Average consumption per day \times Average lead time)
$=2,208 \mathrm{~kg} .-(236 \mathrm{~kg} . \times 6$ days $)=792 \mathrm{~kg}$.
(d) Impact on the profitability of the company by not ordering the EOQ.

		When purchasing the ROQ	When purchasing the EOQ
	Order quantity	$1,928 \mathrm{~kg}$.	2,328 kg.
11	No. of orders a year	$\frac{70,800 \mathrm{~kg} .}{1,928 \mathrm{~kg} .}=36.72 \text { or } 37 \text { orders }$	$\frac{70,800 \mathrm{~kg} .}{2,328 \mathrm{~kg} .}=30.41 \text { or } 31 \text { order }$

III	Ordering Cost	$\begin{gathered} 37 \text { orders } \times ₹ 1,340 \\ =₹ 49,580 \end{gathered}$	$\begin{aligned} & 31 \text { orders } \times ₹ 1,340 \\ & =₹ 41,540 \end{aligned}$
IV	Average Inventory	$\frac{1,928 \mathrm{~kg} .}{2}=964 \mathrm{~kg} .$	$\frac{2,328 \mathrm{~kg} .}{2}=1,164 \mathrm{~kg} .$
V	Carrying Cost	964 kg . \times ₹ 35 = ₹ 33,740	1,164 kg. \times ₹ $35=₹ 40,740$
VI	Total Cost	₹ 83,320	₹ 82,280

Extra Cost incurred due to not ordering EOQ = ₹ $83,320-₹ 82,280=₹ 1,040$

2. Workings Notes:

Calculation of Total hours saved:

	M	J
No. of garments assigned (Pieces.)	15	21
Hour allowed per piece (Hours)	8	8
Total hours allowed (Hours)	120	168
Hours Taken (Hours)	100	140
Hours Saved (Hours)	20	28

(i) Calculation of loss incurred due to incorrect rate selection:
(While calculating loss only excess rate per hour has been taken)

	$\begin{gathered} M \\ \text { (₹) } \end{gathered}$	$\begin{gathered} \mathrm{J} \\ \text { (₹) } \end{gathered}$	Total (₹)
Basic Wages	$\begin{gathered} 1,200 \\ (100 \text { Hrs. } \times \text { ₹ } 12) \end{gathered}$	$\begin{gathered} 1,680 \\ (140 \text { Hrs. } \times ₹ 12) \end{gathered}$	2,880
$\begin{aligned} & \text { Bonus (as per Halsey Scheme) } \\ & \text { (50\% of Time Saved x Excess } \\ & \text { Rate) } \end{aligned}$	$\begin{gathered} 120 \\ (50 \% \text { of } 20 \mathrm{Hrs} \times ₹ 12) \end{gathered}$	$\begin{gathered} 168 \\ (50 \% \text { of } 28 \mathrm{Hrs} . \times \text { ₹ } 12) \end{gathered}$	288
Excess Wages Paid	1,320	1,848	3,168

(ii) Calculation of loss incurred due to incorrect rate selection had Rowan scheme of bonus payment followed:

	\mathbf{M} $(₹)$	J $(₹)$	Total $(₹)$
Basic Wages	1,200	1,680	2,880
$(100$ Hrs. \times ₹12 $)$	$(140$ Hrs. \times ₹12 $)$		

Bonus (as per Rowan Scheme)	200	280	480
$\left(\frac{\text { Time Taken }}{\text { Time Allowed }} \times\right.$ TimeSaved \times ExcessRate $)$	$\left(\frac{100}{120} \times 20 \times\right.$ ₹ 12$)$	$\left(\frac{140}{168} \times 28 \times\right.$ ₹ 12$)$	
Excess Wages Paid	1,400	1,960	3,360

(iii) Calculation of amount that could have been saved if Rowan Scheme were followed

	M (₹)	J (₹)	Total (₹)
Wages paid under Halsey Scheme	1,320	1,848	3,168
Wages paid under Rowan Scheme	1,400	1,960	3,360
Difference (loss)	(80)	(112)	(192)

(iv) Rowan Scheme of incentive payment has the following benefits, which is suitable with the nature of business in which JBL Sisters operates:
(a) Under Rowan Scheme of bonus payment, workers cannot increase their earnings or bonus by merely increasing its work speed. Bonus under Rowan Scheme is maximum when the time taken by a worker on a job is half of the time allowed. As this fact is known to the workers, therefore, they work at such a speed which helps them to maintain the quality of output too.
(b) If the rate setting department commits any mistake in setting standards for time to be taken to complete the works, the loss incurred will be relatively low.

3. Working Note:

1. Effective machine hour:
= Budgeted working hours - Machine Set-up time
$=2,496$ hours -312 hours $=2,184$ hours .
2. Operators' salary per annum:
Salary (3 operators $\times ₹ 30,000 \times 12$ months)
₹ $10,80,000$
Add: Fringe benefits $(20 \%$ of $₹ 10,80,000)$
$\begin{array}{r}\text { ₹ } 2,16,000 \\ \hline \text { ₹ } 12,96,000\end{array}$
3. Depreciation per annum

$$
\frac{₹ 24,90,000-₹ 90,000}{12 \text { years }}=₹ 2,00,000
$$

Computation of Machine hour Rate

	$\begin{aligned} & \text { Amount } \\ & \text { p.a. (₹) } \end{aligned}$	Amount per hour (₹)
Standing charges		
$\text { Operators' Salary }\left(\frac{₹ 12,96,000}{6 \text { machines }} \times \frac{1}{2,184 \text { hours }}\right)$	12,96,000	98.90
Departmental and general overheads: $\text { (₹ } 5,00,000 \times 110 \% \text {) }$	5,50,000	41.97
$\left(\frac{₹ 5,50,000}{6 \text { machines }} \times \frac{1}{2,184 \text { hours }}\right)$		
(A)	18,46,000	140.87
Machine Expenses		
$\text { Depreciation }\left(\frac{₹ 2,00,000}{2,184 \text { hours }}\right)$	2,00,000	91.58
Electricity:		
During working hours (2,496 hours $\times 60$ units $\times ₹ 6$)	8,98,560	411.43
During maintenance hours (416 hours $\times 10$ units \times ₹ 6)	24,960	11.43
Component replacement cost ($2,400 \times 52$ weeks)	1,24,800	57.14
Machine maintenance cost	2,40,000	109.89
(B)	14,88,320	681.47
Machine Hour Rate ($\mathrm{A}+\mathrm{B}$)		822.34

4. (i) Profit Statement using Absorption costing method:

	Particulars	Product			Total
		\mathbf{X}	\mathbf{Y}	\mathbf{Z}	
A.	Sales Quantity	$1,00,000$	80,000	60,000	$2,40,000$
B.	Selling price per unit (₹)	90	180	140	
C.	Sales Value (₹) $[A \times B]$	$90,00,000$	$1,44,00,000$	$84,00,000$	$3,18,00,000$
D.	Direct cost per unit (₹)	50	90	95	
E.	Direct Cost (₹) $[\mathrm{A} \times \mathrm{D}]$	$50,00,000$	$72,00,000$	$57,00,000$	$1,79,00,000$
F.	Overheads:				

(i)	Machine department (₹) (Working note-1)	$24,00,000$	$25,60,000$	$24,00,000$	$73,60,000$
(ii)	Assembly department (₹) (Working note-1)	$30,00,000$	$16,00,000$	$9,00,000$	$55,00,000$
G.	Total Cost (₹) [E+F]	$1,04,00,000$	$1,13,60,000$	$90,00,000$	$3,07,60,000$
H.	Profit (C-G)	$(14,00,000)$	$30,40,000$	$(6,00,000)$	$10,40,000$

(ii) Profit Statement using Activity based costing (ABC) method:

	Particulars	Product			Total
		X	Y	Z	
A.	Sales Quantity	1,00,000	80,000	60,000	
B.	Selling price per unit (₹)	90	180	140	
C.	Sales Value (₹) [$\mathrm{A} \times \mathrm{B}$]	90,00,000	1,44,00,000	84,00,000	3,18,00,000
D.	Direct cost per unit (₹)	50	90	95	
E.	Direct Cost (₹) [A×D]	50,00,000	72,00,000	57,00,000	1,79,00,000
F.	Overheads: (Refer working note-3)				
(i)	Machining services (₹)	21,00,000	22,40,000	21,00,000	64,40,000
(ii)	Assembly services (₹)	24,00,000	12,80,000	7,20,000	44,00,000
(iii)	Set-up costs (₹)	4,50,000	3,00,000	1,50,000	9,00,000
(iv)	Order processing (₹)	2,20,000	2,40,000	2,60,000	7,20,000
(v)	Purchasing (₹)	1,50,000	1,75,000	75,000	4,00,000
G.	Total Cost (₹) $[\mathrm{E}+\mathrm{F}]$	1,03,20,000	1,14,35,000	90,05,000	3,07,60,000
H.	Profit (₹) (C-G)	$(13,20,000)$	29,65,000	$(6,05,000)$	10,40,000

Working Notes:

1.

		Products			Total
		X	Y	Z	
A.	Production (units)	1,00,000	80,000	60,000	
B.	Machine hours per unit	3	4	5	
C.	Total Machine hours $[A \times B]$	3,00,000	3,20,000	3,00,000	9,20,000

D.	Rate per hour (₹)	8	8	8	
E.	Machine Dept. cost [C×D]	24,00,000	25,60,000	24,00,000	73,60,000
F.	Labour hours per unit	6	4	3	
G.	Total labour hours [A×F]	6,00,000	3,20,000	1,80,000	11,00,000
H.	Rate per hour (₹)	5	5	5	
1	Assembly Dept. cost [$\mathrm{G} \times \mathrm{H}$]	30,00,000	16,00,000	9,00,000	55,00,000

$\begin{aligned} \text { Machine hour rate } & =\frac{₹ 73,60,000}{9,20,000 \text { hours }}=₹ 8 \\ \text { Labour hour rate } & =\frac{₹ 55,00,000}{11,00,000 \text { hours }}=₹ 5\end{aligned}$
2. Calculation of cost driver rate

Cost Pool	Amount $(₹)$	Cost Driver	Quantity	Driver rate $(₹)$
Machining services	$64,40,000$	Machine hours	$9,20,000$ hours	7.00
Assembly	$44,00,000$	Direct labour hours	$11,00,000$ hours	4.00
services				
Set-up costs	$9,00,000$	Machine set-ups	9,000 set-ups	100.00
Order processing	$7,20,000$	Customer orders	7,200 orders	100.00
Purchasing	$4,00,000$	Purchase orders	800 orders	500.00

3. Calculation of activity-wise cost

		Products			
		\mathbf{X}	\mathbf{Y}	\mathbf{Z}	Total
A.	Machining hours (Refer Working note-1) $3,00,000$ B.Machine hour rate (₹) (Refer Working note-2)	7	$7,20,000$	$3,00,000$	$9,20,000$
C.	Machining services cost $(₹)$ (A×B]	$\mathbf{2 1 , 0 0 , 0 0 0}$	$\mathbf{2 2 , 4 0 , 0 0 0}$	$\mathbf{2 1 , 0 0 , 0 0 0}$	$\mathbf{6 4 , 4 0 , 0 0 0}$

D.	Labour hours (Refer Working note-1)	6,00,000	3,20,000	1,80,000	11,00,000
E.	Labour hour rate (₹) (Refer Working note-2)	4	4	4	
F.	Assembly services $\operatorname{cost}(\mathrm{F})$ [$\mathrm{D} \times \mathrm{E}$]	24,00,000	12,80,000	7,20,000	44,00,000
G.	Machine set-ups	4,500	3,000	1,500	9,000
H.	Rate per set-up (₹) (Refer Working note-2)	100	100	100	
I.	Set-up cost (₹) [G×H]	4,50,000	3,00,000	1,50,000	9,00,000
J.	Customer orders	2,200	2,400	2,600	7,200
K.	Rate per order ($₹$) (Refer Working note-2)	100	100	100	
L.	Order processing cost (₹) $[\mathrm{J} \times \mathrm{K}]$	2,20,000	2,40,000	2,60,000	7,20,000
M.	Purchase orders	300	350	150	800
N.	Rate per order (₹) (Refer Working note-2)	500	500	500	
0.	Purchasing cost (₹) [M×N]	1,50,000	1,75,000	75,000	4,00,000

5. Statement of Cost of RTA Ltd. for the year ended 31 st December, 2020:

SI. No.	Particulars	Amount (₹)	Amount (₹)
(i)	Material Consumed: - Raw materials purchased - Freight inward Add: Opening stock of raw materials Less: Closing stock of raw materials	$\begin{array}{r} 5,00,00,000 \\ 9,20,600 \\ 10,00,000 \\ (8,40,000) \end{array}$	5,10,80,600
(ii)	Direct employee (labour) cost: - Wages paid to factory workers		25,20,000
(iii)	Direct expenses: - Royalty paid for production - Amount paid for power \& fuel - Job charges paid to job workers	$\begin{aligned} & 1,80,000 \\ & 3,50,000 \\ & 3,10,000 \\ & \hline \end{aligned}$	8,40,000

(xi)	- Salary paid to Manager- Sales \& Marketing - Performance bonus paid to sales staffs	$\begin{aligned} & 5,60,000 \\ & 1,20,000 \end{aligned}$	$7,00,000$80,000
	Distribution overheads: - Packing cost paid for re-distribution of finished goods		
	Cost of Sales		5,66,49,600

6. (i)

Statement of Profit as per financial records
(for the year ended March 31, 2020)

	$\mathbf{(₹)}$		$\mathbf{(₹)}$
To Opening stock of Finished	$1,06,250$	By Sales	$45,60,000$
Goods	92,000	By Closing stock of finished	91,300
To Work-in-process		Goods	
	$16,80,000$	By Work-in-Process	82,400
To Raw materials consumed	$12,20,000$	By Rent received	92,000
To Direct labour	$8,44,000$	By Interest received	76,000
To Factory overheads	$3,96,000$		
To Administration overheads			
To Selling \& distribution	$1,44,000$		
overheads	$2,44,000$		
To Dividend paid	36,000		
To Bad debts	$1,39,450$		$49,01,700$
		$49,01,700$	
To Profit			

Statement of Profit as per costing records (for the year ended March 31,2020)

	$(₹)$
Sales revenue (A) (12,615 units)	$45,60,000$
Cost of sales:	
Opening stock	
(625 units \times ₹ 240)	$1,50,000$
Add: Cost of production of 12,405 units	$43,28,140$

(Refer to working note 2)	$(1,44,795)$
Less: Closing stock	
$\left(\frac{₹ 43,28,140 \times 415 \text { units }}{12,405 \text { units }}\right)$	
Production cost of goods sold (12,615 units)	43,33,345
Selling \& distribution overheads $(12,615 \text { units } \times ₹ 6)$	75,690
Cost of sales: (B)	44,09,035
Profit: $\{(\mathrm{A})$ - (B) $\}$	1,50,965

(ii)

Statement of Reconciliation
(Reconciling the profit as per costing records with the profit as per financial records)

	(₹)	(₹)
Profit as per Cost Accounts		1,50,965
Add: Administration overheads over absorbed $\text { (₹ } 5,64,540 \text { - ₹ } 3,96,000 \text {) }$	1,68,540	
Opening stock overvalued $\text { (₹ } 1,50,000 \text { - ₹ } 1,06,250 \text {) }$	43,750	
Interest received	76,000	
Rent received	92,000	
Factory overheads over recovered	10,000	3,90,290
		5,41,255
Less: Selling \& distribution overheads under recovery (₹ $1,44,000$ - ₹ 75,690)	68,310	
Closing stock overvalued ($₹ 1,44,795-₹ 91,300)$	53,495	
Dividend	2,44,000	
Bad debts	36,000	$(4,01,805)$
Profit as per financial accounts		1,39,450

Working notes:

1. Number of units produced

	Units
Sales	12,615
Add: Closing stock	415
Total	13,030
Less: Opening stock	(625)
Number of units produced	12,405

2. Cost Sheet

3. (i) Calculation of Overhead Recovery Rate:

$$
\begin{aligned}
\text { Factory Overhead Recovery Rate } & =\frac{\text { Factory Overheadin } 2019-20}{\text { Direct Labour Costsin 2019-20 }} \times 100 \\
& =\frac{₹ 30,80,000}{₹ 90,50,000} \times 100=34 \% \text { of Direct labour }
\end{aligned}
$$

Administrative Overhead Recovery Rate

$$
\begin{aligned}
& =\frac{\text { Administrative Overheadin } 2019-20}{\text { Factory Costs in } 2019-20 \text { (W.N.) }} \times 100 \\
& =\frac{₹ 20,50,400}{₹ 2,96,80,000} \times 100=6.91 \% \text { of Factory Cost }
\end{aligned}
$$

Working Note:

Calculation of Factory Cost in 2019-20

Particulars	Amount (₹)
Opening Stock of Material	$15,00,000$
Add: Purchase of Material	$1,80,50,000$
Less: Closing Stock of Material	$(20,00,000)$
Material Consumed	$1,75,50,000$
Direct Labour	$90,50,000$
Prime Cost	$2,66,00,000$
Factory Overhead	$30,80,000$
Factory Cost	$2,96,80,000$

(ii) Job Cost Sheet for the order received in 2020-21

Particulars	Amount (₹)
Material	$80,00,000$
Labour	$40,50,000$
Factory Overhead (34\% of ₹ 40,50,000)	$13,77,000$
Factory Cost	$1,34,27,000$
Administrative Overhead (6.91\% of ₹ 1,34,27,000)	$9,27,806$
Cost of delivery	$4,50,000$
Total Cost	$1,48,04,806$
Add: Profit @ 25\% of Sales or 33.33\% of cost	$49,34,935$
Sales value (Price to be quoted for the order)	$1,97,39,741$

Hence the price to be quoted is ₹ $1,97,39,741$
8.

Process I
Statement of Equivalent Production and Cost

Input (Units)	Particulars	Output Units	Equivalent Production					
			Materials		Labour		Overheads	
			(\%)	Units	(\%)	Units	(\%)	Units
40,000	Completed Closing WIP	30,000	100	30,000	100	30,000	100	30,000
		10,000	100	10,000	50	5,000	50	5,000
40,000		40,000		40,000		35,000		35,000

Particulars	Materials	Labour	Overhead	Total
Cost incurred (₹)	$3,00,000$	$3,50,000$	$2,45,000$	$8,95,000$
Equivalent units	40,000	35,000	35,000	
Cost per equivalent unit (₹)	7.50	10.00	7.00	24.50

Process-I Account

Particulars	Units	(₹)	Particulars	Units	(₹)
To Materials	40,000	$3,00,000$	By Process-II A/c	30,000	$7,35,000$
			$(30,000$ units \times ₹ 24.5$)$		
To Labour		$3,50,000$	By Closing WIP*	10,000	$1,60,000$
		$2,45,000$			
	40,000	$8,95,000$		40,000	$8,95,000$

* (Material 10,000 units \times ₹ 7.5) + (Labour 5,000 units $\times ₹ 10$) + (Overheads 5,000 units $\times ₹ 7$)
$=₹ 75,000+₹ 50,000+₹ 35,000=₹ 1,60,000$
Process II
Statement of Equivalent Production and Cost

Input (Units)	Particulars	Output Units	Equivalent Production					
			Materials		Labour		Overheads	
			(\%)	Units	(\%)	Units	(\%)	Units
30,000	Completed	28,000	100	28,000	100	28,000	100	28,000
	Normal loss	200		--		--		--
	Closing WIP		100	1,800	25	450	25	450
30,000		30,000		29,800		28,450		28,450

Particulars	Materials	Labour	Overhead	Total
Process-I Cost	$7,35,000$	--	--	$7,35,000$
Cost incurred (₹)	--	71,125	85,350	$1,56,475$
Equivalent units	29,800	28,450	28,450	--
Cost per equivalent unit (₹)	24.6644	2.5000	3.0000	30.1644

Process-II Account

Particulars	Units	(₹)	Particulars	Units	(₹)
To Process-I A/c	30,000	$7,35,000$	By Normal loss A/c	200	--
To Packing Material	--	80,000	By Finished Goods By Stock A/c	$28,000^{*}$	$9,24,604$
To Direct Wages	--	71,125	By Closing WIP	$1,800^{* *}$	46,871
To Factory Overhead	--	85,350			
	30,000	$9,71,475$		30,000	$9,71,475$

* $28,000 \times ₹ 30.1644=₹ 8,44,603+₹ 80,000$ (Packing Material Cost) $=$ ₹ $9,24,604$
** 1,800 units $\times ₹ 24.6644+450$ units $\times(₹ 2.5+₹ 3)=₹ 46,871$

9. (i) Statement showing the expenses of operating a single bus and the fleet of 25 buses for a year

Particulars	Per bus per annum (₹)	
Running costs : (A)		
Diesel (Refer to working note 1)	2,21,056	55,26,400
Repairs \& maintenance costs: (B)	20,500	5,12,500
Fixed charges:		
Driver's salary (₹ $12,000 \times 12$ months)	1,44,000	36,00,000
Cleaners salary (₹ $8,000 \times 12$ months)	96,000	24,00,000
Licence fee, taxes etc.	8,400	2,10,000
Insurance	15,600	3,90,000
Depreciation ($\left.\frac{\text { ₹ } 20,00,000-₹ 1,60,000}{16 \text { years }}\right)$	1,15,000	28,75,000

Total fixed charges: (C)	$3,79,000$	$94,75,000$
Total expenses: $(\mathrm{A}+\mathrm{B}+\mathrm{C})$	$6,20,556$	$1,55,13,900$

(ii) Average cost per student per month in respect of students coming from a distance of:

(a)	2 km . from the school $\{₹ 6,20,556 /(236$ students $\times 12$ months) $\}$	$₹ 219.12$
	(Refer to Working Note 2)	
(b)	4 km. from the school $(₹ 219.12 \times 2)$	$₹ 438.24$
(c)	8 km. from the school (₹ $219.12 \times 4)$	$₹ 876.48$

(iii) Calculation of minimum bus fare to be recovered from the students during the year 2020:
Statement showing the expenses of operating a single bus in year 2020

Particulars	Per bus per annum
Running costs : (A)	
Diesel (Refer to working note 3)	66,316.80
Repairs \& maintenance costs: (B) (₹ $20,500 \times 0.75$)	15,375
Fixed charges:	
Driver's salary $\{₹ 12,000 \times 3$ months $+(75 \%$ of ₹ $12,000 \times 9$ months $)\}$	1,17,000
Cleaners salary $\{₹ 8,000 \times 3$ months $+(75 \%$ of $₹ 8,000 \times 9$ months $)\}$	78,000
Licence fee, taxes etc.	8,400
Insurance	15,600
Depreciation $\left(\frac{₹ 20,00,000-₹ 1,60,000}{16 \text { years }}\right)$	1,15,000
Total fixed charges: (C)	3,34,000
Total expenses: $(\mathrm{A}+\mathrm{B}+\mathrm{C})$	4,15,691.80

Minimum bus fare to be recovered:

(a)	2 km. from the school $\{₹ 4,15,691.8 /(236$ students $\times 12$ months) $\}$	$₹ 146.78$
	(Refer to Working Note 2)	
(b)	4 km. from the school $(₹ 146.78 \times 2)$	$₹ 293.56$
(c)	8 km. from the school $(₹ 146.78 \times 4)$	$₹ 587.12$

Working Notes:

1. Calculation of diesel cost per bus:

No. of trips made by a bus each day	4
Distance travelled in one trip both ways ($8 \mathrm{~km} . \times 2 \mathrm{trips}$)	16 km.
Distance travelled per day by a bus ($16 \mathrm{~km} . \times 4$ shifts)	64 km.
Distance travelled during a month ($64 \mathrm{~km} . \times 22$ days $)$	$1,408 \mathrm{~km}$.
Distance travelled per year ($1,408 \times 10$ months)	$14,080 \mathrm{~km}$.
No. of litres of diesel required per bus per year	2,816 litres
$(14,080 \mathrm{~km} . \div 5 \mathrm{~km})$.	
Cost of diesel per bus per year (2,816 litres $\times ₹ 78.50)$	$₹ 2,21,056$

2. Calculation of equivalent number of students per bus:

Bus capacity of 2 trips $(40$ students $\times 2$ trips)	80 students
$1 / 4^{\text {th }}$ fare students $(15 \% \times 80$ students)	12 students
$1 / 2$ fare students $\left(30 \% \times 80\right.$ students $\times 2$) (equivalent to $1 / 4^{\text {th }}$	48 students
fare students)	176 students
Full fare students $\left(55 \% \times 80\right.$ students $\times 4$) (equivalent to $1 / 4^{\text {th }}$ fare students)	236 students
Total students equivalent to $1 / 4^{\text {th }}$ fare students	

3. Calculation of diesel cost per bus in Year 2020:

Distance travelled during a month ($64 \mathrm{~km} . \times 22$ days)	$1,408 \mathrm{~km}$.
Distance travelled during the year $2020(1,408 \times 3$ months)	$4,224 \mathrm{~km}$.
No. of litres of diesel required per bus per year	844.8 litres
$(4,224 \mathrm{~km} . \div 5 \mathrm{~km})$.	
Cost of diesel per bus per year (844.8 litres $\times ₹ 78.50)$	$₹ 66,316.80$

10. (i) Material Usage Variance $=$ Std. Price (Std. Quantity - Actual Quantity)

$$
\text { = ₹ } 90 \text { (9,000 kg. - 8,900 kg.) }
$$

$$
\text { = ₹ } 9,000 \text { (Favourable) }
$$

(ii) Material Price Variance
(iii) Material Cost Variance
= Actual Quantity (Std. Price - Actual Price)

$$
=8,900 \mathrm{~kg} \text {. (₹ } 90 \text { - ₹ } 92)=₹ 17,800 \text { (Adverse) }
$$

$=$ Std. Material Cost - Actual Material Cost
$=(S Q \times S P)-(A Q \times A P)$

		$=(9,000 \mathrm{~kg} \times$ ₹ 90$)-(8,900 \mathrm{~kg} \times$ ₹ 92$)$
		= ₹ 8,10,000-₹ 8,18,800
		= ₹ 8,800 (Adverse)
	Labour Efficiency Variance	$=$ Std. Rate (Std. Hours - Actual Hours)
		$=₹ 80\left(\frac{9,000}{10} \times 8 \text { hours }-7,000 \text { hrs. }\right)$
		= ₹ 80 (7,200 hrs. -7,000 hrs.)
		= ₹ 16,000 (Favourable)
(v)	Labour Rate Variance	= Actual Hours (Std. Rate - Actual Rate)
		= 7,000 hrs. (₹ $80-₹ 84$)
		= ₹ 28,000 (Adverse)
(vi)	Labour Cost Variance	= Std. Labour Cost - Actual Labour Cost
		$=(S H \times S R)-(A H \times A R)$
		$=(7,200 \mathrm{hrs}$.$\times ₹ 80)-(7,000 \mathrm{hrs}$.$\times ₹ 84)$
		= ₹ $5,76,000$ - ₹ $5,88,000$
		= ₹ 12,000 (Adverse)
(vii) Variable Cost Variance		$=$ Std. Variable Cost - Actual Variable Cost
		$=(7,200 \mathrm{hrs}$.$\times ₹ 20) - ₹ 1,40,000$
		= ₹ 4,000 (Adverse)

(viii) Fixed Overhead Cost Variance $=$ Absorbed Fixed Overhead - Actual Fixed Overhead

$$
\begin{aligned}
& =\frac{₹ 250}{10 \mathrm{kgs} .} \times 9,000 \mathrm{kgs} .-₹ 2,60,000 \\
& =₹ 2,25,000-₹ 2,60,000=₹ 35,000 \text { (Adverse) }
\end{aligned}
$$

11. (i) Computation of PV ratio, contribution and break-even sales for existing product mix

	Products			Total
	S	T	U	
Selling Price (₹)	300	400	200	
Less: Variable Cost (₹)	150	200	120	

Contribution per unit (₹)	150	200	80	
P/V Ratio (Contribution/Selling price)	50%	50%	40%	
Sales Mix	35%	35%	30%	
Contribution per rupee of sales	17.5%	17.5%	12%	47%
(P/V Ratio \times Sales Mix)				
Present Total Contribution (₹60,00,000 $\times 47 \%$)	₹ 28,20,000			
Less: Fixed Costs	₹ 18,00,000			
Present Profit	₹ 10,20,000			
Present Break Even Sales (₹18,00,000/0.47)	$₹ 38,29,787$			

(ii) Computation of PV ratio, contribution and break-even sale for proposed product mix

	Products			Total
	S	T	M	
Selling Price (₹) Less: Variable Cost (₹) Contribution per unit ($₹$) P/V Ratio (Contribution/Selling price) Sales Mix Contribution per rupee of sales (P/V Ratio x Sales Mix)	300	400	300	
	150	200	150	
	150	200	150	
	50\%	50\%	50\%	
	50\%	25\%	25\%	
	25\%	12.5\%	12.5\%	50\%
Proposed Total Contribution (₹64,00,000 x 50\%)				00,000
Less: Fixed Costs				,00,000
Proposed Profit				00,000
Proposed Break Even Sales (₹ $18,00,000 / 0.50$)				00,000

12. Workings:

Statement Showing "Total Variable Cost for the year"

Particulars	Amount $(₹)$
Estimated Sales Revenue	$3,02,40,000$
Less: Desired Profit Margin on Sale @ 20\%	$60,48,000$

Estimated Total Cost	$2,41,92,000$
Less: Fixed Selling and Distribution Overheads	$69,12,000$
Total Variable Cost	$1,72,80,000$

Statement Showing "Variable Cost per unit"

Particulars	Variable Cost p.u. (₹)
Direct Materials:	960
A: 6 Kg. @ ₹ 160 per kg.	300
B: 3 Kg. @ ₹ 100 per kg.	
Labour Cost:	560
Machine Shop: 4 hrs. @ ₹ 140 per hour	140
Assembly Shop: 2 hrs. @ ₹ 70 per hour	140
Factory Overheads: 20\% of (₹ $560+₹ 140$)	60
Variable Selling \& Distribution Expenses	2,160
Total Variable Cost per unit	

(i) Calculation of number of units of product proposed to be sold and selling price per unit:

Number of Units Sold	$=$ Total Variable Cost / Variable Cost per unit
	$=₹ 1,72,80,000 / ₹ 2,160$
	$=8,000$ units
Selling Price per unit	$=$ Total Sales Value / Number of Units Sold
	$=₹ 3,02,40,000 / 8,000$ units
	$=₹ 3,780$

(ii) Production Budget (units)

Particulars	Units
Budgeted Sales	8,000
Add: Closing Stock	3,000
Total Requirements	11,000
Less: Opening Stock	$(2,500)$
Required Production	8,500

(iii) Materials Purchase Budget (Kg.)

Particulars	Material A	Material B
Requirement for Production	51,000	25,500
Add: Desired Closing Stock	$(8,500$ units $\times 6 \mathrm{Kg})$.	$(8,500$ units $\times 3 \mathrm{Kg})$.
	8,000	5,500
	59,000	31,000
Quantity to be purchased	$(7,500)$	$(4,000)$
		51,500

13. (a) These contracts provide for the payment by the contractee of the actual cost of construction plus a stipulated profit, mutually decided between the two parties.
The main features of these contracts are as follows:
(i) The practice of cost-plus contracts is adopted in the case of those contracts where the probable cost of the contracts cannot be ascertained in advance with a reasonable accuracy.
(ii) These contracts are preferred when the cost of material and labour is not steady and the contract completion may take number of years.
(iii) The different costs to be included in the execution of the contract are mutually agreed, so that no dispute may arise in future in this respect. Under such type of contracts, contractee is allowed to check or scrutinize the concerned books, documents and accounts.
(iv) Such a contract offers a fair price to the contractee and also a reasonable profit to the contractor.

The contract price here is ascertained by adding a fixed and mutually pre-decided component of profit to the total cost of the work.
(b) Apportionment of Joint Cost amongst Joint Products using:

Market value at the point of separation: This method is used for apportionment of joint costs to joint products upto the split off point. It is difficult to apply if the market value of the product at the point of separation is not available. It is useful method where further processing costs are incurred disproportionately.

Net realizable value Method: From the sales value of joint products (at finished stage) the followings are deducted:

- Estimated profit margins
- Selling \& distribution expenses, if any
- Post split off costs.

The resultant figure so obtained is known as net realizable value of joint products. Joint costs are apportioned in the ratio of net realizable value.
(c) Cost classification based on variability
(i) Fixed Costs - These are the costs which are incurred for a period, and which, within certain output and turnover limits, tend to be unaffected by fluctuations in the levels of activity (output or turnover). They do not tend to increase or decrease with the changes in output. For example, rent, insurance of factory building etc., remain the same for different levels of production.
(ii) Variable Costs - These costs tend to vary with the volume of activity. Any increase in the activity results in an increase in the variable cost and vice-versa. For example, cost of direct labour, etc.
(iii) Semi-variable Costs - These costs contain both fixed and variable components and are thus partly affected by fluctuations in the level of activity. Examples of semi variable costs are telephone bills, gas and electricity etc.

Cost classification based on controllability

(i) Controllable Costs - Cost that can be controlled, typically by a cost, profit or investment centre manager is called controllable cost. Controllable costs incurred in a particular responsibility centre can be influenced by the action of the executive heading that responsibility centre. For example, direct costs comprising direct labour, direct material, direct expenses and some of the overheads are generally controllable by the shop level management.
(ii) Uncontrollable Costs - Costs which cannot be influenced by the action of a specified member of an undertaking are known as uncontrollable costs. For example, expenditure incurred by, say, the tool room is controllable by the foreman in-charge of that section but the share of the tool-room expenditure which is apportioned to a machine shop is not to be controlled by the machine shop foreman.

(d) Salient features of Budget Manual

- Budget manual contains much information which is required for effective budgetary planning.
- A budget manual is a collection of documents that contains key information for those involved in the planning process.
- An introductory explanation of the budgetary planning and control process, including a statement of the budgetary objective and desired results is included in Budget Manual.
- Budget Manual contains a form of organisation chart to show who is responsible for the preparation of each functional budget and the way in which the budgets are interrelated.
- In contains a timetable for the preparation of each budget.
- Copies of all forms to be completed by those responsible for preparing budgets, with explanations concerning their completion is included in Budget Manual.

