PAPER - 3: COST AND MANAGEMENT ACCOUNTING

QUESTIONS

Material Cost

1. The following data are available in respect of material X for the year ended 31 st March, 2021:

Opening stock
Purchases during the year
Closing stock

9,00,000
1,70,00,000
11,00,000
(i) CALCULATE:
(a) Inventory turnover ratio, and
(b) The number of days for which the average inventory is held.
(ii) INTERPRET the ratio calculated as above if the industry inventory turnover rate is 10.

Employee Cost

2. Textile Ltd. pays following overtime premium for its labour beside normal wages of ₹ 100 per hour:

Before and after normal working hours	80% of basic wage rate
Sundays and holidays	150% of basic wage rate

During the previous year 2019-20, the following hours were worked:

Normal time	$3,00,000$ hours
Overtime before and after normal working hours	60,000 hours
Overtime on Sundays and holidays	$\underline{15,000 \text { hours }}$
Total	$\underline{3,75,000 \text { hours }}$

During the current year 2020-21, the following hours have been worked on job 'Spinning':

Normal	4,000 hours
Overtime before and after normal working hours	400 hours
Overtime on Sundays and holidays	100 hours
Total	4,500 hours

You are required to CALCULATE the labour cost chargeable to job 'Spinning' and overhead in each of the following instances:
(a) Where overtime is worked regularly throughout the year as a policy due to the workers' shortage.
(b) Where overtime is worked irregularly to meet the requirements of production.
(c) Where overtime is worked at the request of the customer to expedite the job.

Overheads: Absorption Costing Method

3. PL Ltd. has three production departments $\mathrm{P}_{1}, \mathrm{P}_{2}$ and P_{3} and two service departments S_{1} and S_{2}. The following data are extracted from the records of the company for the month of October, 2020:

Rent and rates	$12,50,000$
General lighting	$1,50,000$
Indirect Wages	$3,75,000$
Power	$5,00,000$
Depreciation on machinery	$10,00,000$
Insurance of machinery	$4,00,000$

Other Information:

	$\mathbf{P}_{\mathbf{1}}$	$\mathbf{P}_{\mathbf{2}}$	$\mathbf{P}_{\mathbf{3}}$	$\mathbf{S}_{\mathbf{1}}$	$\mathbf{S}_{\mathbf{2}}$
Direct wages (₹)	$7,50,000$	$5,00,000$	$7,50,000$	$3,75,000$	$1,25,000$
Horse Power of Machines used	60	30	50	10	-
Cost of machinery (₹)	$60,00,000$	$80,00,000$	$1,00,00,000$	$5,00,000$	$5,00,000$
Floor space (Sq. ft)	2,000	2,500	3,000	2,000	500
Number of light points	10	15	20	10	5
Production hours worked	6,225	4,050	4,100	-	-

Expenses of the service departments S_{1} and S_{2} are reapportioned as below:

	$\mathbf{P}_{\mathbf{1}}$	$\mathbf{P}_{\mathbf{2}}$	$\mathbf{P}_{\mathbf{3}}$	\mathbf{S}_{1}	$\mathbf{S}_{\mathbf{2}}$
\mathbf{S}_{1}	20%	30%	40%	-	10%
$\mathbf{S}_{\mathbf{2}}$	40%	20%	30%	10%	-

Required:
(i) COMPUTE overhead absorption rate per production hour of each production department.
(ii) DETERMINE the total cost of product X which is processed for manufacture in department P_{1}, P_{2} and P_{3} for 5 hours, 3 hours and 4 hours respectively, given that its direct material cost is ₹ 12,500 and direct labour cost is ₹ 7,500 .

Activity Based Costing

4. Family Store wants information about the profitability of individual product lines: Soft drinks, Fresh produce and Packaged food. Family store provides the following data for the year 2020-21 for each product line:

	Soft drinks	Fresh produce	Packaged food
Revenues	$₹ 39,67,500$	$₹ 1,05,03,000$	$₹ 60,49,500$
Cost of goods sold	$₹ 30,00,000$	$₹ 75,00,000$	$₹ 45,00,000$
Cost of bottles returned	$₹ 60,000$	$₹ 0$	$₹ 0$
Number of purchase orders placed	360	840	360
Number of deliveries received	300	2,190	660
Hours of shelf-stocking time	540	5,400	2,700
Items sold	$1,26,000$	$11,04,000$	$3,06,000$

Family store also provides the following information for the year 2020-21:

Activity	Description of activity	Total Cost (₹)	Cost-allocation base
Bottles returns	Returning of empty bottles	60,000	Direct tracing to soft drink line
Ordering	Placing of orders for purchases	$7,80,000$	1,560 purchase orders
Delivery	Physical delivery and receipt of goods	$12,60,000$	3,150 deliveries
Shelf stocking	Stocking of goods on store shelves and on- going restocking	$8,64,000$	8,640 hours of shelf- stocking time
Customer Support	Assistance provided to customers including check-out	$15,36,000$	$15,36,000$ items sold

Required:
(i) Family store currently allocates support cost (all cost other than cost of goods sold) to product lines on the basis of cost of goods sold of each product line. CALCULATE the operating income and operating income as a \% of revenues for each product line.
(ii) If Family Store allocates support costs (all costs other than cost of goods sold) to product lines using and activity-based costing system, CALCULATE the operating income and operating income as a \% of revenues for each product line.

Cost Sheet

5. Impact Ltd. provides you the following details of its expenditures for the year ended 31st March, 2021:

S.	Particulars	Amount (₹)	Amount (₹)
No.			
(i)	Raw materials purchased		$5,00,00,000$
(ii)	GST paid under Composition scheme		$10,00,000$
(iii)	Freight inwards		$5,20,600$
(iv)	Trade discounts received		$10,00,000$
(v)	Wages paid to factory workers		$15,20,000$
(vi)	Contribution made towards employees' PF \&		$1,90,000$
(vii)	ESIS	Production bonus paid to factory workers	
(viii)	Fee for technical assistance		$1,50,000$
(ix)	Amount paid for power \& fuel		$1,12,000$
(x)	Job charges paid to job workers		$2,62,000$
(xi)	Stores and spares consumed		$4,50,000$
(xii)	Depreciation on:		$1,10,000$
	Factory building		
	Office building	64,000	
	Plant \& Machinery	46,000	
(xiii)	Salary paid to supervisors	86,000	$1,96,000$
(xiv)	Repairs \& Maintenance paid for:		$1,20,000$
	Plant \& Machinery		
	Sales office building	58,000	
	Vehicles used by directors	50,000	
		20,600	$1,28,600$

(xv)	Insurance premium paid for: Plant \& Machinery Factory building	$\begin{aligned} & 31,200 \\ & 28,100 \end{aligned}$	59,300
(xvi)	Expenses paid for quality control check activities		25,000
(xvii)	Research \& development cost paid for improvement in production process		48,200
(xviii)	Expenses paid for administration of factory work		1,38,000
(xix)	Salary paid to functional mangers:		
	Production control	4,80,000	
	Finance \& Accounts	9,60,000	
	Sales \& Marketing	12,00,000	26,40,000
(xx)	Salary paid to General Manager		13,20,000
(xxi)	Packing cost paid for:		
	Primary packing necessary to maintain quality	1,06,000	
	For re-distribution of finished goods	1,12,000	2,18,000
(xxii)	Interest and finance charges paid (for usage of non- equity fund)		3,50,000
(xxiii)	Fee paid to auditors		1,80,000
(xxiv)	Fee paid to legal advisors		1,20,000
(xxv)	Fee paid to independent directors		2,40,000
(xxvi)	Payment for maintenance of website for online sales		1,80,000
(xxvii)	Performance bonus paid to sales staffs		2,40,000
(xxviii)	Value of stock as on 1st April, 2020:		
	Raw materials	9,00,000	
	Work-in-process	4,00,000	
	Finished goods	7,00,000	20,00,000
(xxix)	Value of stock as on 31st March, 2021:		
	Raw materials	5,60,000	
	Work-in-process	2,50,000	
	Finished goods	11,90,000	20,00,000

Amount realized by selling of waste generated during manufacturing process - ₹ $66,000 /$ From the above data, you are required to PREPARE Statement of cost of Impact Ltd. for the year ended 31st March, 2021, showing (i) Prime cost, (ii) Factory cost, (iii) Cost of Production, (iv) Cost of goods sold and (v) Cost of sales.

Cost Accounting System

6. XYZ Ltd. maintains a non-integrated accounting system for the purpose of management information. The following are the data related with year 2020-21:

Particulars	(₹ in '000)
Opening balances:	
- Stores ledger control A/c	24,000
- Work-in-process control A/c	6,000
- Finished goods control A/c	1,29,000
- Building construction A/c	3,000
- Cost ledger control A/c	1,62,000
During the year following transactions took place:	
Materials:	
- Purchased	12,000
- Issued to production	15,000
- Issued to general maintenance	1,800
- Issued to building construction	1,200
Wages:	
- Gross wages paid	45,000
- Indirect wages paid	12,000
- For building construction	3,000
Factory overheads:	
- Actual amount incurred (excluding items shown above)	48,000
- Absorbed in building construction	6,000
- Under-absorbed	2,400
Royalty paid	1,500
Selling, distribution and administration overheads	7,500
Sales	1,35,000

At the end of the year, the stock of raw material and work-in-process was ₹ $1,65,00,000$
and ₹ $75,00,000$ respectively. The loss arising in the raw material account is treated as factory overheads. The building under construction was completed during the year. Gross profit margin is 20% on sales.

Required:

PREPARE the relevant control accounts to record the above transactions in the cost ledger of the company.

Batch Costing

7. Rollon Ltd. is committed to supply 96,800 bearings per annum to Racing Ltd. on steady basis. It is estimated that it costs 25 paise as inventory carrying cost per bearing per month and the set-up cost per run of bearing manufacture is ₹ 588 .
(a) COMPUTE what would be the optimum run size for bearing manufacture?
(b) Assuming that the company has a policy of manufacturing 8,800 bearings per run, CALCULATE how much extra costs the company would be incurring as compared to the optimum run suggested in (a) above?

Contract Costing

8. RN Builders Ltd. entered into a contract on April 1, 2019. The total contract was for ₹ $2,00,00,000$. Actual expenditure for the period April 1, 2019 to March 31, 2020 and estimated expenditure for April 1, 2020 to December 31, 2020 are given below:

Particulars	$\mathbf{2 0 1 9 - 2 0}$ (actual) (₹)	2020-21 (9 months) (estimated) (₹)
Materials issued	$36,00,000$	$34,30,000$
Wages: Paid	$30,00,000$	$34,93,000$
\quad Outstanding at the end	$2,50,000$	$3,32,000$
Plant purchased	$10,00,000$	-
Sundry expenses: Paid	$2,90,000$	$2,75,000$
\quad Prepaid at the end	25,000	-
Establishment charges	$5,85,000$	-

A part of the material was unsuitable and thus sold for ₹ $7,25,000$ (cost being ₹ $6,00,000$) and a part of plant was scrapped and disposed-off for ₹ $1,15,000$. The value of plant at site on 31 March, 2020 was ₹ $3,10,000$ and the value of material at site was ₹ $1,70,000$. Cash received on account to date was ₹ $70,00,000$, representing 80% of the work certified. The cost of work uncertified was valued at ₹ $10,95,000$.

The contract would be completed by $31^{\text {st }}$ December, 2020 and the contractor estimated further expenditure that would be incurred in completion of the contract:
> A sum of ₹ $12,50,000$ would have to be spent on the plant and the residual value of the plant on the completion of the contract would be ₹ $1,50,000$.
> Establishment charges would cost the same amount per month as in the previous year.
> ₹ $4,32,000$ would be sufficient to provide for contingencies.
Required:
PREPARE a Contract Account for the year ended $31^{\text {st }}$ March, 2020, and CALCULATE estimated total profit on this contract.

Process Costing

9. Following information is available regarding Process-I of a manufacturing company for the month of February:

Production Record:

Units in process as on 1 st February $\quad 8,000$
(All materials used, $1 / 4^{\text {th }}$ complete for labour and overhead)
New units introduced 32,000
Units completed 28,000
Units in process as on $28^{\text {th }}$ February 12,000
(All materials used, $1 / 3^{\text {rd }}$ complete for labour and overhead)
Cost Records:
Work-in-process as on $1^{\text {st }}$ February
Materials 1,20,000

Labour 20,000
Overhead $\quad \begin{array}{r}20,000 \\ \hline 1,60,000\end{array}$
Cost during the month:
Materials $5,12,000$

Labour 3,00,000
Overhead 3,00,000
11,12,000
Presuming that average method of inventory is used, PREPARE the following:
(i) Statement of equivalent production.
(ii) Statement showing cost for each element.
(iii) Statement of apportionment of cost.
(iv) Process cost account for Process-I.

Joint Products \& By Products

10. A company produces two joint products A and B from the same basic materials. The processing is completed in three departments.
Materials are mixed in Department I. At the end of this process, A and B get separated. After separation, A is completed in the Department II and B in Department III. During a period, $4,00,000 \mathrm{~kg}$ of raw material was processed in Department I at a total cost of ₹ $17,50,000$, and the resultant 50% becomes A and 40% becomes B and 10% normally lost in processing.
In Department II, $1 / 5^{\text {th }}$ of the quantity received from Department I is lost in processing. A is further processed in Department II at a cost of ₹ $2,60,000$.
In Department III, further new material is added to the material received from Department I and weight mixture is doubled, there is no quantity loss in the department III. Further processing cost (with material cost) in Department III is ₹ $3,00,000$.
The details of sales during the said period are:

	Product A	Product B
Quantity sold (kg)	$1,50,000$	$3,00,000$
Sales price per kg $(₹)$	10	4

There were no opening stocks. If these products sold at split-off-point, the selling price of A and B would be $₹ 8$ and $₹ 4$ per kg respectively.
Required:
(i) PREPARE a statement showing the apportionment of joint cost to A and B in proportion of sales value at split off point.
(ii) PREPARE a statement showing the cost per kg of each product indicating joint cost, processing cost and total cost separately.
(iii) PREPARE a statement showing the product wise profit for the year.
(iv) On the basis of profits before and after further processing of product A and B , give your COMMENT that products should be further processed or not.

Service Costing

11. Mr. PS owns a bus which runs according to the following schedule:
(i) Delhi to Hisar and back, the same day Distance covered: 160 km . one way
Number of days run each month: 9
Seating capacity occupied 90%.
(ii) Delhi to Aligarh and back, the same day Distance covered: 160 km . one way
Number of days run each month: 12
Seating capacity occupied 95\%
(iii) Delhi to Alwar and back, the same day Distance covered: 170 km . one way
Number of days run each month: 6
Seating capacity occupied 100\%
(iv) Following are the other details:

Cost of the bus ₹ $15,00,000$
Salary of the Driver ₹ 30,000 p.m.
Salary of the Conductor ₹ 26,000 p.m.
Salary of the part-time Accountant ₹ $7,000 \mathrm{p} . \mathrm{m}$.
Insurance of the bus
Diesel consumption 5 km . per litre at ₹ 6,000 p.a.

Road tax
₹ 90 per litre

Lubricant oil
₹ 21,912 p.a.

Permit fee
₹ 30 per 100 km .

Repairs and maintenance
₹ 500 p.m.

Depreciation of the bus
Seating capacity of the bus
Passenger tax is 20% of the total takings.
CALCULATE the bus fare to be charged from each passenger to earn a profit of 30% on total takings.
The fares are to be indicated per passenger for the journeys: (i) Delhi to Hisar (ii) Delhi to Aligarh and (iii) Delhi to Alwar.

Standard Costing

12. BabyMoon Ltd. uses standard costing system in manufacturing one of its product 'Baby Cap'. The details are as follows:

Direct Material 1 Meter @ ₹ 60 per meter	₹ 60
Direct Labour 2 hour @ ₹ 20 per hour	₹ 40
Variable overhead 2 hour @ ₹ 10 per hour	₹ $\underline{20}$
Total	₹ $\underline{120}$

During the month of August, 10,000 units of 'Baby Cap' were manufactured. Details are as follows:
Direct material consumed 11,400 meters @ ₹ 58 per meter
Direct labour Hours ? @ ? ₹ $4,48,800$
Variable overhead incurred ₹ $2,24,400$
Variable overhead efficiency variance is ₹ $4,000 \mathrm{~A}$. Variable overheads are based on Direct Labour Hours.

You are required to CALCULATE the following Variances:
(a) Material Variances- Material Cost Variance, Material Price Variance and Material Usage Variance.
(b) Variable Overheads variances- Variable overhead Cost Variance, Variable overhead Efficiency Variance and Variable overhead Expenditure Variance.
(c) Labour variances- Labour Cost Variance, Labour Rate Variance and Labour Efficiency Variance.

Marginal Costing

13. A company has three factories situated in North, East and South with its Head Office in Mumbai. The Management has received the following summary report on the operations of each factory for a period:
(₹ in '000)

Factory	Sales		Profit	
	Actual	Over / (Under) Budget	Actual	Over / (Under) Budget
North	1,100	(400)	135	(180)
East	1,450	150	210	90
South	1,200	(200)	330	(110)

CALCULATE the following for each factory and for the company as a whole for the period:
(i) Fixed Cost
(ii) Break-even Sales

Budget and Budgetary Control

14. The accountant of manufacturing company provides you the following details for year 201920:

Particulars	$\mathbf{(₹)}$
Direct materials	$28,00,000$
Direct Wages	$16,00,000$
Fixed factory overheads	$16,00,000$
Variable factory overheads	$16,00,000$
Other variable costs	$12,80,000$
Other fixed costs	$12,80,000$
Profit	$18,40,000$
Sales	$\mathbf{1 , 2 0 , 0 0 , 0 0 0}$

During the year, the company manufactured two products A and B and the output and costs were:

Particulars	A	B
Output (units)	$2,00,000$	$1,00,000$
Selling price per unit	$₹ 32.00$	$₹ 56.00$
Direct materials per unit	$₹ 8.00$	$₹ 12.00$
Direct wages per unit	$₹ 4.00$	$₹ 8.00$

Variable factory overhead is absorbed as a percentage of direct wages. Other variable costs have been computed as: Product A ₹ 4.00 per unit; and B ₹ 4.80 per unit.
During 2020-21, it is expected that the demand for product A will fall by 25% and for B by 50%. It is decided to manufacture a new product C , the cost for which is estimated as follows:

Particulars	Product C
Output (units)	$2,00,000$
Selling price per unit	$₹ 28.00$
Direct materials per unit	$₹ 6.40$
Direct wages per unit	$₹ 4.00$

It is anticipated that the other variable costs per unit of Product C will be same as for product A.

PREPARE a budget to present to the management, showing the current position and the position for 2020-21. COMMENT on the comparative results.

Miscellaneous

15. (a) DIFFERENTIATE between Cost Control and Cost Reduction.
(b) 'Like other branches of accounting, cost accounting also has certain limitations'. EXPLAIN the limitations.
(c) DIFFERENTIATE between Job Costing and Batch Costing.
(d) DISCUSS the treatment of by-product cost in Cost Accounting when they are of small total value.

SUGGESTED HINTS/ANSWERS

1. (i) (a) Inventory turnover ratio (Refer to working note)
$=\frac{\text { Cost of stock of raw material consumed }}{\text { Averagestock of raw material }}$
$=\frac{₹ 1,68,00,000}{₹ 10,00,000}=16.8$
(b) Average number of days for which the average inventory is held

$$
=\frac{365}{\text { Inventory turnover ratio }}=\frac{365 \text { days }}{16.8}=21.73 \text { days }
$$

Working Note:

Particulars	(₹)
Opening stock of raw material	$9,00,000$
Add: Material purchases during the year	$1,70,00,000$
Less: Closing stock of raw material	$11,00,000$
	$1,68,00,000$

(ii) The Inventory turnover ratio for material X is 16.8 which mean an inventory item takes only 21.73 or 22 days to issue from stores for production process. The rate is better than the industry rate which is 10 time or 36.5 days. This inventory turnover ratio
indicates better inventory management system and good demand for the final product in market.

2. Workings:

Basic wage rate
Overtime wage rate before and after working hours

Overtime wage rate for Sundays and holidays

$$
\begin{aligned}
& \text { = ₹ } 100 \text { per hour } \\
& \text { = ₹ } 100+(₹ 100 \times 80 \%) \\
& \text { = ₹ } 180 \text { per hour } \\
& \text { = ₹ } 100+(₹ 100 \times 150 \%) \\
& \text { = ₹ } 250 \text { per hour }
\end{aligned}
$$

Computation of average inflated wage rate (including overtime premium):

Particulars	Amount (₹)
Annual wages for the previous year for normal time $(3,00,000$ hrs. \times ₹ 100$)$	$3,00,00,000$
Wages for overtime before and after normal working hours $(60,000$ hrs. $\times ₹ 180)$	$108,00,000$
Wages for overtime on Sundays and holidays $(15,000$ hrs. $\times ₹ 250)$	$37,50,000$
Total wages for 3,75,000 hrs.	$4,45,50,000$

Average inflated wage rate $=\frac{₹ 4,45,50,000}{3,75,000 \text { hours }}=₹ 118.80$
(a) Where overtime is worked regularly as a policy due to workers' shortage

The overtime premium is treated as a part of employee cost and job is charged at an inflated wage rate. Hence, employee cost chargeable to job 'Spinning'
$=$ Total hours \times Inflated wage rate $=4,500$ hrs. \times ₹ $118.80=₹ 5,34,600$
(b) Where overtime is worked irregularly to meet the requirements of production

Basic wage rate is charged to the job and overtime premium is charged to factory overheads as under:

Employee cost chargeable to Job 'Spinning' = 4,500hours @ ₹ 100 per hour
= ₹ 4,50,000

Factory overhead $=\{400$ hrs. $\times(₹ 100 \times 80 \%)\}+\{100$ hrs. $\times(₹ 100 \times 150 \%)\}$

$$
=\{₹ 32,000+₹ 15,000\}=₹ 47,000
$$

(c) Where overtime is worked at the request of the customer, overtime premium is also charged to the job as under:

Job 'Spinning' Employee cost: 4,500hrs. @ ₹ 100	4,50,000
Overtime premium: 400 hrs @ ($₹ 100 \times 80 \%$)	32,000
100 hrs . @ (₹ $100 \times 150 \%$)	15,000
Total	4,97,000

3. Primary Distribution Summary

Item of cost	Basis of apportionmentTotal $(₹)$	\mathbf{P}_{1} $(₹)$	\mathbf{P}_{2} $(₹)$	\mathbf{P}_{3} $(₹)$	\mathbf{S}_{1} $(₹)$	\mathbf{S}_{2} $(₹)$	
Direct wages	Actual	$5,00,000$	--	--	$3,75,000$	$1,25,000$	
Rent and Rates	Floor area $(4: 5: 6: 4: 1)$	$12,50,000$	$2,50,000$	$3,12,500$	$3,75,000$	$2,50,000$	62,500
General lighting	Light points $(2: 3: 4: 2: 1)$	$1,50,000$	25,000	37,500	50,000	25,000	12,500
Indirect wages	Direct wages $(6: 4: 6: 3: 1)$	$3,75,000$	$1,12,500$	75,000	$1,12,500$	56,250	18,750
Power	Horse Power of machines used $(6: 3: 5: 1)$	$5,00,000$	$2,00,000$	$1,00,000$	$1,66,667$	33,333	-
Depreciation of machinery	Value of machinery $(12: 16: 20: 1: 1)$	$10,00,000$	$2,40,000$	$3,20,000$	$4,00,000$	20,000	20,000
Insurance of machinery	Value of machinery $(12: 16: 20: 1: 1)$	$4,00,000$	96,000	$1,28,000$	$1,60,000$	8,000	8,000

Overheads of service cost centres
Let S_{1} be the overhead of service cost centre S_{1} and S_{2} be the overhead of service cost centre S_{2}.
$S_{1}=7,67,583+0.10 S_{2}$
$\mathrm{S}_{2}=2,46,750+0.10 \mathrm{~S}_{1}$
Substituting the value of S_{2} in S_{1} we get
$S_{1}=7,67,583+0.10\left(2,46,750+0.10 S_{1}\right)$
$S_{1}=7,67,583+24,675+0.01 S_{1}$
$0.99 \mathrm{~S}_{1}=7,92,258$

$$
\begin{aligned}
\therefore S_{1} & =₹ 8,00,260 \\
\therefore S_{2} & =2,46,750+0.10 \times 8,00,260 \\
& =₹ 3,26,776
\end{aligned}
$$

Secondary Distribution Summary

Particulars	Total (₹)	\mathbf{P}_{1} (₹)	$\mathbf{P}_{2}(₹)$	\mathbf{P}_{3} (₹)
Allocated and Apportioned over-heads as per primary distribution	$31,60,667$	$9,23,500$	$9,73,000$	$12,64,167$
$\mathrm{~S}_{1}$	$8,00,260$	$1,60,052$	$2,40,078$	$3,20,104$
$\mathrm{~S}_{2}$	$3,26,776$	$1,30,710$	65,355	98,033
		$\mathbf{1 2 , 1 4 , 2 6 2}$	$\mathbf{1 2 , 7 8 , 4 3 3}$	$\mathbf{1 6 , 8 2 , 3 0 4}$

(i) Overhead rate per hour

	$\mathbf{P}_{\mathbf{1}}$	$\mathbf{P}_{\mathbf{2}}$	$\mathbf{P}_{\mathbf{3}}$
Total overheads cost (₹)	$12,14,262$	$12,78,433$	$16,82,304$
Production hours worked	6,225	4,050	4,100
Rate per hour (₹)	$\mathbf{1 9 5 . 0 6}$	$\mathbf{3 1 5 . 6 7}$	$\mathbf{4 1 0 . 3 2}$

(ii) Cost of Product X

	$(₹)$
Direct material	$12,500.00$
Direct labour	$7,500.00$
Prime cost	$\mathbf{2 0 , 0 0 0 . 0 0}$
Production on overheads	
$\mathrm{P}_{1} 5$ hours $\times ₹ 195.06=975.30$	
$\mathrm{P}_{2} 3$ hours $\times ₹ 315.67=947.01$	
$\mathrm{P}_{3} 4$ hours $\times ₹ 410.32=\underline{1,641.28}$	$3,563.59$
Factory cost	$\mathbf{2 3 , 5 6 3 . 5 9}$

4. Working notes:
5. Total support cost:

	(₹)
Bottles returns	60,000
Ordering	$7,80,000$
Delivery	$12,60,000$
Shelf stocking	$8,64,000$
Customer support	$15,36,000$
Total support cost	$45,00,000$

2. Percentage of support cost to cost of goods sold (COGS):
$=\frac{\text { Total support cost }}{\text { Total cost of goods sold }} \times 100$
$=\frac{₹ 45,00,000}{₹ 1,50,00,000} \times 100=30 \%$
3. Cost for each activity cost driver:

Activity (1)	Total cost (₹) (2)	Cost allocation base (3)	Cost driver rate (4) $=[(2) \div(3)]$
Ordering	$7,80,000$	1,560 purchase orders	$₹ 500$ per purchase order
Delivery	$12,60,000$	3,150 deliveries	$₹ 400$ per delivery
Shelf-stocking	$8,64,000$	8,640 hours	$₹ 100$ per stocking hour
Customer support	$15,36,000$	$15,36,000$ items sold	$₹ 1$ per item sold

(i) Statement of Operating income and Operating income as a percentage of revenues for each product line
(When support costs are allocated to product lines on the basis of cost of goods sold of each product)

	Soft Drinks (₹)	Fresh Produce (₹)	Packaged Foods (₹)	Total (₹)
Revenues: (A)	$39,67,500$	$1,05,03,000$	$60,49,500$	$2,05,20,000$
Cost of Goods sold (COGS): (B)	$30,00,000$	$75,00,000$	$45,00,000$	$1,50,00,000$
Support cost (30\% of COGS): (C) (Refer working notes)	$9,00,000$	$22,50,000$	$13,50,000$	$45,00,000$
Total cost: (D) =\{(B) + (C) $\}$	$39,00,000$	$97,50,000$	$58,50,000$	$1,95,00,000$
Operating income: (E) $=\{(\mathrm{A})$ (D) $\}$	67,500	$7,53,000$	$1,99,500$	$10,20,000$
Operating income as a percentage revenues: (F)=\{(E)/(A) of	1.70%	7.17%	3.30%	4.97%

(ii) Statement of Operating income and Operating income as a percentage of revenues for each product line
(When support costs are allocated to product lines using an activity-based costing system)

	Soft drinks (₹)	Fresh Produce (₹)	Packaged Food (₹)	Total (₹)
Revenues: (A)	$39,67,500$	$1,05,03,000$	$60,49,500$	$2,05,20,000$
Cost \& Goods sold	$30,00,000$	$75,00,000$	$45,00,000$	$1,50,00,000$
Bottle return costs	60,000	0	0	60,000
Ordering cost (360:840:360)	$1,80,000$	$4,20,000$	$1,80,000$	$7,80,000$
Delivery cost (300:2,190:660)	$1,20,000$	$8,76,000$	$2,64,000$	$12,60,000$
Shelf stocking cost* (540:5,400:2,700)	54,000	$5,40,000$	$2,70,000$	$8,64,000$
Customer Support cost	$1,26,000$	$11,04,000$	$3,06,000$	$15,36,000$
$(1,26,000: 11,04,00$ $0: 3,06,000)$				
Total cost: (B)	$35,40,000$	$1,04,40,000$	$55,20,000$	$1,95,00,000$
Operating income: (C) $=\{(\mathrm{A})-(\mathrm{B})\}$	$4,27,500$	63,000	$5,29,500$	$10,20,000$
Operating income as a \% of revenues: (D) $=\{(\mathrm{C}) /(\mathrm{A}) \times 100\}$	10.78%	0.60%	8.75%	4.97%

* Refer to working note 3

5. Statement of Cost of Impact Ltd. for the year ended 31st March, 2021:

SI. No.	Particulars	Amount (₹)	Amount (₹)
(i)	Material Consumed:		
	Raw materials purchased	$5,00,00,000$	
	GST paid under Composition scheme*	$10,00,000$	
	Freight inwards	$5,20,600$	
	Less: Trade discounts received	$(10,00,000)$	

(viii)	Less: Realisable value on sale of scrap and waste		$(66,000)$
(ix)	Add: Primary packing cost		1,06,000
	Cost of Production		5,49,23,100
	Add: Opening stock of finished goods		7,00,000
	Less: Closing stock of finished goods		(11,90,000)
	Cost of Goods Sold		5,44,33,100
(x)	Administrative overheads:		
	Depreciation on office building	46,000	
	Repairs \& Maintenance paid for vehicles used by directors	20,600	
	Salary paid to Manager- Finance \& Accounts	9,60,000	
	Salary paid to General Manager	13,20,000	
	Fee paid to auditors	1,80,000	
	Fee paid to legal advisors	1,20,000	
	Fee paid to independent directors	2,40,000	28,86,600
(xi)	Selling overheads:		
	Repairs \& Maintenance paid for sales office building	50,000	
	Salary paid to Manager- Sales \& Marketing	12,00,000	
	Payment for maintenance of website for online sales	1,80,000	
	Performance bonus paid to sales staffs	2,40,000	16,70,000
(xii)	Packing cost paid for re-distribution of finished goods		1,12,000
(xiii)	Interest and finance charges paid		3,50,000
	Cost of Sales		5,94,51,700

* GST paid under Composition scheme would be included under cost of material as it is not eligible for input tax credit.

6.

Cost Ledger Control Account

Particulars	(₹ in '000)	Particulars	(₹ in ‘000)
To Costing P\&L A/c	$1,35,000$	By Balance b/d	$1,62,000$
To Building Construction A/c	13,200	By Stores Ledger control A/c	12,000

To Balance c/d	$1,44,900$	By Wages Control A/c	45,000
		By Factory overhead control A/c	48,000
		By Royalty A/c Ay Selling, Distribution and Administration overheads	7,500
		By Costing P\&L A/c	17,100
	$2,93,100$		$2,93,100$

Stores Ledger Control Account

Particulars	(₹ in '000)	Particulars	(₹ in'000)
To Balance b/d	24,000	By WIP control A/c	15,000
To Cost Ledger control A/c	12,000	By Factory overheads control A/c	1,800
		By Building construction A/c	1,200
		By Factory overhead control A/c (bal. fig.) (loss)	1,500
		By Balance c/d	16,500
	36,000		36,000

Wages Control Account

Particulars	(₹ in ‘000)	Particulars	(₹ in ‘000)
To Cost Ledger control A/c	45,000	By Factory overhead control A/c	12,000
		By Building Construction A/c	3,000
		By WIP Control A/c (bal. fig.)	30,000
	45,000		45,000

Factory Overhead Control Account

Particulars	(₹ in ‘000)	Particulars	(₹ in ‘000)
To Stores Ledger control A/c	1,800	By Building Construction A/c	6,000
To Wages Control A/c	12,000	By WIP Control A/c (bal. fig.)	54,900
To Cost Ledger control A/c	48,000	By Costing P\&L A/c (under- absorption)	2,400

To Stores Ledger control A/c (loss)	1,500		
	63,300		63,300

Royalty Account

Particulars	(₹ in ‘000)	Particulars	(₹ in ‘000)
To Cost Ledger control A/c	1,500	By WIP Control A/c	1,500
	1,500		1,500

Work-in-process Control Account

Particulars	(₹ in ‘000)	Particulars	(₹ in ‘000)
To Balance b/d	6,000	By Finished goods control A/c (bal. fig.)	99,900
To Stores Ledger control A/c	15,000		
To Wages Control A/c	30,000		
To Factory overhead control A/c	54,900		
To Royalty A/c	1,500	By Balance c/d	7,500
	$1,07,400$		$1,07,400$

Finished Goods Control Account

Particulars	(₹ in '000)	Particulars	(₹ in ‘000)
To Balance b/d	$1,29,000$	By Cost of Goods Sold A/c (Refer working note)	$1,08,000$
To WIP control A/c	99,900	By Balance c/d	$1,20,900$
	$2,28,900$		$2,28,900$

Cost of Goods Sold Account

Particulars	(₹ in ‘000)	Particulars	(₹ in ‘000)
To Finished Goods control A/c	$1,08,000$	By Cost of sales A/c	$1,08,000$
	$1,08,000$		$1,08,000$

Selling, Distribution and Administration Overhead Control Account

Particulars	(₹ in ‘000)	Particulars	(₹ in ‘000)
To Cost Ledger control A/c	7,500	By Cost of sales A/c	7,500
	7,500		7,500

Cost of Sales Account

Particulars	(₹ in ‘000)	Particulars	(₹ in '000)
To Cost of Goods Sold A/c	$1,08,000$	By Costing P\&L A/c	$1,15,500$
To Selling, Distribution and Administration A/c	7,500		
	$1,15,500$		$1,15,500$

Costing P\&L Account

Particulars	(₹ in ‘000)	Particulars	(₹ in '000)
To Cost of Sales A/c	$1,15,500$	By Cost Ledger control A/c	$1,35,000$
To Factory overhead control A/c	2,400		
To Cost Ledger control A/c (bal. fig.) (Profit)	17,100		
	$1,35,000$		$1,35,000$

Building Construction Account

Particulars	(₹ in ‘000)	Particulars	(₹ in ‘000)
To Balance b/d	3,000	By Cost Ledger control A/c	13,200
To Stores Ledger control A/c	1,200		
To Wages Control A/c	3,000		
To Factory overhead control A/c	6,000		
	13,200		13,200

Trial Balance

Particulars	Dr.	Cr.
	(₹ in ‘000)	(₹ in ‘000)
Stores Ledger Control A/c	16,500	
WIP Control A/c	7,500	
Finished Goods Control A/c	$1,20,900$	
Cost Ledger Control A/c		$1,44,900$
	$1,44,900$	$1,44,900$

Workings:

Cost of Goods sold $=\frac{₹ 13,50,00,000 \times 80}{100}=₹ 10,80,00,000$
7. (a) Optimum production run size (Q)
$=\sqrt{\frac{2 \mathrm{DS}}{\mathrm{C}}}=\sqrt{\frac{2 \times 96,800 \times ₹ 588}{0.25 \times 12}}=6,160$ bearings.
(b) Calculation of Extra Cost

Total Cost (of maintaining the inventories) when production run size (Q) are 6,160 and 8,800 bearings respectively.
Total cost $=$ Total set-up cost + Total carrying cost.

Particulars	When run size is 6,160 bearings	When run size is 8,800 bearings
Total set up cost	$\begin{aligned} & =\frac{96,800}{6,160} \times ₹ 588=₹ 9,240 \\ & \text { Or, } \\ & \text { No. of setups }=15.71(16 \\ & \text { setups) } \\ & =16 \times ₹ 588=₹ 9,408 \end{aligned}$	$=\frac{96,800}{8,800} \times ₹ 588=₹ 6,468$
Total Carrying cost	$\begin{aligned} & 1 / 2 \times 6,160 \times 0.25 \times 12 \\ & =₹ 9,240 \end{aligned}$	$\begin{aligned} & 1 / 2 \times 8,800 \times 0.25 \times 12 \\ & =₹ 13,200 \end{aligned}$
Total Cost	₹ 18,480 ₹ 18,648	₹ 19,668

₹ 1,188 / ₹ 1,020 is the extra cost incurred by the company due to run size not being optimum run size.
8.

RN Builders Ltd.

Contract Account (2019-20)

Particulars	(₹)	Particular s	(₹)
To Materials issued	36,00,000	By Material sold	7,25,000
To Wages paid 30,00,000		By Plant sold	1,15,000
Add: Outstanding 2,50,000	32,50,000	By Plant at site c/d	3,10,000
To Plant	10,00,000	By Material at site c/d	1,70,000
To $\begin{gathered}\text { Sundry } \\ \text { Expenses }\end{gathered} \quad 2,90,000$		By Work-in-progress c/d	
Less: Prepaid $\quad(25,000)$	2,65,000	Work $\quad 87,50,000$ certified (₹ $70,00,000 \div 80 \%$)	
To Establishment charges	5,85,000	$\begin{array}{ll} \text { Work } \\ \text { uncertified } \end{array} \quad 10,95,000$	98,45,000
To Costing P \& LA/C (₹ $7,25,000$ - ₹ $6,00,000$)	1,25,000		
To Notional profit (Profit for the year)	23,40,000		
	1,11,65,000		1,11,65,000

Calculation of Estimated Profit

	Particulars	(₹)	(₹)	
(1)	Material consumed $(36,00,000+1,25,000-7,25,000)$	$30,00,000$		
	Add: Further consumption	$34,30,000$	$64,30,000$	
(2)	Wages:	$(34,93,000-2,50,000)$	$32,43,000$	
	Add: Further cost		$3,32,000$	$68,25,000$
	Add: Outstanding	$(10,00,000-1,15,000)$	$8,85,000$	
(3)	Plant used	$12,50,000$		
	Add: Further plant introduced	$(1,50,000)$	$19,85,000$	
	Less: Closing balance of plant	$5,85,000$		
(4)	Establishment charges			

	Add: Further charges for nine months	$(5,85,000 \times 9 / 12)$	$4,38,750$	$10,23,750$
(5)	Sundry expenses	$2,90,000$		
	Add: Further expenses	$2,75,000$	$5,65,000$	
(6)	Reserve for contingencies		$4,32,000$	
Estimated profit (balancing figure)		$\mathbf{2 7 , 3 9 , 2 5 0}$		
Contract price		$2,00,00,000$		

9. (i) Statement of equivalent production (Average cost method)

Particulars	Input Units	Particulars	Output Units	Equivalent Production			
				Material		Labour \& O.H.	
				\%	Units	\%	Units
Opening WIP	8,000	Completed and transferred	28,000	100	28,000	100	28,000
Units introduced	32,000	Closing WIP	12,000	100	12,000	$1 / 3 \mathrm{rd}$	4,000
	40,000		40,000		40,000		32,000

(ii)

Statement showing cost for each element

Particulars	Materials $(₹)$	Labour $(₹)$	Overhead $(₹)$	Total $(₹)$
Cost of opening work-in- process	$1,20,000$	20,000	20,000	$1,60,000$
Cost incurred during the month	$5,12,000$	$3,00,000$	$3,00,000$	$11,12,000$
Total cost: (A)	$6,32,000$	$3,20,000$	$3,20,000$	$12,72,000$
Equivalent units: (B)	40,000	32,000	32,000	
Cost per equivalent unit: $(\mathrm{C})=$ $(\mathrm{A} \div \mathrm{B})$	15.8	10	10	35.8

(iii)

Statement of apportionment of cost

	Particulars	Amount (₹)	Amount (₹)
1.Value of units completed and transferred (28,000 units $\times ₹ 35.8)$ 2. Value of Closing W-I-P:		$10,02,400$	
	Materials (12,000 units \times ₹ 15.8)	$1,89,600$	

$-\quad$ Labour (4,000 units \times ₹ 10)	40,000	
$-\quad$ Overheads $(4,000$ units \times ₹ 10)	40,000	$2,69,600$

(iv)

Process-I Cost Account

Particulars	Units	(₹)	Particulars	Units	(₹)
To Opening W-I-P	8,000	$1,60,000$	By Completed units	28,000	$10,02,400$
To Materials	32,000	$5,12,000$	By Closing W-I-P	12,000	$2,69,600$
To Labour	--	$3,00,000$			
To Overhead	--	$3,00,000$			
	40,000	$12,72,000$		40,000	$12,72,000$

10.

Calculation of quantity produced

	Dept I (kg)	Dept II (kg)	Dept III (kg)
Input	$4,00,000$	$2,00,000$	$1,60,000$
		$(50 \%$ of $4,00,000 \mathrm{~kg})$.	$(40 \%$ of $4,00,000 \mathrm{~kg})$.
Weight (lost) or added	$(40,000)$	$(40,000)$	$1,60,000$
	$(10 \%$ of $4,00,000 \mathrm{~kg})$.	$\left(1 / 5^{\text {th }}\right.$ of $\left.2,00,000 \mathrm{kg}.\right)$	
Production of A	$3,60,000$	$1,60,000$	$3,20,000$
Production of B	$2,00,000$	$1,60,000$	--

(i)

Statement of apportionment of joint cost of dept I

	Product A	Product B
Output (kg)	$2,00,000$	$1,60,000$
Selling price per kg (₹)	8	4
Sales value (₹)	$16,00,000$	$6,40,000$
Share in Joint cost (5:2)	$12,50,000$	$5,00,000$
	$(₹ 17,50,000 \times 5 \div 7)$	$(₹ 17,50,000 \times 2 \div 7)$

(ii)

Statement of cost per kg

	Product A	Product B
Output (kg)	$1,60,000$	$3,20,000$
Share in joint cost $(₹)$	$12,50,000$	$5,00,000$
Joint Cost per kg $(₹)(\mathrm{A})$	7.8125	1.5625

Further processing cost $(₹)$	$2,60,000$	$3,00,000$
Further processing cost per kg $(₹)(\mathrm{B})$	1.625	0.9375
Total cost per kg $(₹)\{(\mathrm{A})+(\mathrm{B})\}$	9.4375	2.5000

(iii)

Statement of profit

	Product A	Product B
Output (kg)	$1,60,000$	$3,20,000$
Sales (kg)	$(1,50,000)$	$(3,00,000)$
Closing stock (kg)	10,000	20,000
	$(₹)$	$(₹)$
Sales	$15,00,000$	$12,00,000$
	$(1,50,000 \mathrm{~kg} \times ₹ 10)$	$(3,00,000 \mathrm{~kg} \times$ ₹ 4$)$
Add: closing stock (at full cost)	94,375	50,000
Value of production	$(10,000 \mathrm{~kg} \times ₹ 9.4375)$	$(20,000 \mathrm{~kg} \times ₹ 2.5)$
Less: Share in joint cost	$15,94,375$	$12,50,000$
Further processing cost	$12,50,000$	$5,00,000$
Profit	$2,60,000$	$3,00,000$

(iv) Profitability statement before and after processing

	Product A		Product B	
	Before (₹)	After (₹)	Before (₹)	After (₹)
Sales Value	16,00,000		6,40,000	
Share in joint costs	12,50,000		5,00,000	
Profit	3,50,000	$\begin{array}{r} 84,375 \\ \text { (as per iii above) } \\ \hline \end{array}$	1,40,000	$4,50,000$ (as per iii above)

Product A should be sold at split off point and product B after processing because of higher profitability.
11. Working Notes:

1. Total Distance (in km.) covered per month

Bus route	Km. per trip	Trips per day	Days per month	Km. per month	
Delhi to Hisar	160	2		9	2,880

Delhi to Aligarh	160	2	12	3,840
Delhi to Alwar	170	2	6	2,040
Total			8,760	

2. Passenger-km. per month

	Total seats available per month (at 100\% capacity)	Capacity utilised		Km. per trip	PassengerKm. per month
		(\%)	Seats		
Delhi to Hisar \& Back	(50 seats $\times 2$ trips $\times 9$ days)	90	810	160	$\begin{array}{r} 1,29,600 \\ (810 \text { seats } \times \\ 160 \mathrm{~km} .) \end{array}$
Delhi to Aligarh \& Back	1,200 $(50$ seats $\times 2$ trips $\times 12$ days $)$	95	1,140	160	$\begin{array}{r} 1,82,400 \\ (1,140 \text { seats } \\ \times 160 \mathrm{~km} .) \end{array}$
Delhi to Alwar \& Back	600 $(50$ seats $\times 2$ trips $\times 6$ days $)$	100	600	170	$\begin{array}{r} 1,02,000 \\ (600 \text { seats } \times \\ 170 \mathrm{~km} .) \end{array}$
Total					4,14,000

Monthly Operating Cost Statement

Particulars	(₹)	(₹)
(i) Running Costs		
Diesel $\{(8,760 \mathrm{~km} \div 5 \mathrm{~km}) \times$ ₹ 90$\}$	1,57,680.00	
Lubricant oil $\{(8,760 \mathrm{~km} \div 100) \times ₹ 30\}$	2,628.00	1,60,308.00
(ii) Maintenance Costs		
Repairs \& Maintenance		5,000.00
(iii) Standing charges		
Salary to driver	30,000.00	
Salary to conductor	26,000.00	
Salary of part-time accountant	7,000.00	
Insurance ($₹$ 6,000 $\div 12$)	500.00	
Road tax (₹ $21,912 \div 12$)	1,826.00	
Permit fee	500.00	

Depreciation $\{(₹ 15,00,000 \times 30 \%) \div 12\}$	$37,500.00$	$1,03,326.00$
Total costs per month before Passenger Tax (i) $)+(i i)+($ (iii)		$2,68,634.00$
Passenger Tax*		$1,07,453.60$
Total Cost		$3,76,087.60$
Add: Profit*		$1,61,180.40$
Total takings per month		$5,37,268.00$

*Let total takings be X then,
$X=$ Total costs per month before passenger tax +0.2 X (passenger tax) +0.3 X (profit)
$X \quad=₹ 2,68,634+0.2 X+0.3 X$
$0.5 X=₹ 2,68,634$ or, $X=₹ 5,37,268$
Passenger Tax $=20 \%$ of $₹ 5,37,268=₹ 1,07,453.60$
Profit $\quad=30 \%$ of ₹ $5,37,268=₹ 1,61,180.40$
Calculation of Rate per passenger km. and fares to be charged for different routes
Rate per Passenger-Km. $=\frac{\text { Total takings per month }}{\text { Total Passenger }-K m . \text { per month }}$

$$
=\frac{₹ 5,37,268}{4,14,000 \text { Passenger-Km. }}=₹ 1.30 \text { (approx.) }
$$

Bus fare to be charged per passenger:

Delhi to Hisar	$=₹ 1.30 \times 160 \mathrm{~km}$	$=₹ 208.00$	
Delhi to Aligarh	$=₹ 1.30 \times 160 \mathrm{~km}$	$=$	$₹ 208.00$
Delhi to Alwar	$=₹ 1.30 \times 170 \mathrm{~km}$	$=$	$₹ 221.00$

12. (i) Material Variances

Budget			Std. for actual			Actual		
Quantity (Meter)	Price (₹)	Amount (₹)	Quantity (Meter)	Price (₹)	Amount (₹)	Quantity (Meter)	Price (₹)	Amount (₹)
1	60	60	10,000	60	6,00,000	11,400	58	6,61,200
Material Cost Variance			$=(S Q \times S P-A Q \times A P)$					
$=6,00,000-6,61,200$			0 = ₹ 61,200 (A)					
Material Price Variance			$=(S P-A P) A Q$					

$$
\begin{aligned}
=(60-58) 11,400 & =₹ 22,800(F) \\
\text { Material Usage Variance } & =(S Q-A Q) \text { SP } \\
& =(10,000-11,400) 60
\end{aligned}
$$

(ii) Variable Overheads variances

Variable overhead cost Variance
= Standard variable overhead - Actual Variable Overhead
$=(10,000$ units $\times 2$ hours $\times ₹ 10)-2,24,400=₹ 24,400(A)$
Variable overhead Efficiency Variance
$=($ Standard Hours - Actual Hours) \times Standard Rate per Hour
Let Actual Hours be ' X ', then:
$(20,000-X) \times 10 \quad=4,000(A)$
$2,00,000-10 x$
$=-4,000$
$X \quad=2,04,000 \div 10$
Therefore, Actual Hours (X)

$$
=20,400
$$

Variable overhead Expenditure Variance
= Variable Overhead at Actual Hours - Actual Variable Overheads
$=20,400 \times ₹ 10-2,24,400=₹ 20,400(\mathrm{~A})$
(iii) Labour variances

Budget			Std. for actual			Actual		
Hours	Rate $(₹)$	Amount $(₹)$	Hours	Rate $(₹)$	Amount $(₹)$	Hours	Rate $(₹)$	Amount $(₹)$
2	20	40	20,000	20	$4,00,000$	20,400	22^{*}	$4,48,800$

*Actual Rate $=₹ 4,48,800 \div 20,400$ hours $=₹ 22$
Labour Cost Variance $=(S H \times S R)-(A H \times A R)$
$=4,00,000-4,48,800=₹ 48,800(\mathrm{~A})$
Labour Rate Variance $=(S R-A R) \times A H$
$=(20-22) \times 20,400=₹ 40,800(\mathrm{~A})$
Labour Efficiency Variance $=(\mathbf{S H}-\mathrm{AH}) \times$ SR
$=(20,000-20,400) \times 20=₹ 8,000(\mathrm{~A})$
13. Computation of Profit Volume Ratio
(₹ in '000)

	Sales			Profit			P/V Ratio$\left(\frac{\text { Change in Profit }}{\text { Change inSales }}\right.$
	Actual	Over / (Under) Budget	Budgeted Sales	Actual	Over / (Under) Budget	Budget Profit	
North	1,100	(400)	1,500	135	(180)	315	45\%
East	1,450	150	1,300	210	90	120	60\%
South	1,200	(200)	1,400	330	(110)	440	55\%

(i) Computation of Fixed Costs
(₹ in '000)

Factory	Actual Sales	P/V Ratio	Contribution	Actual Profit	Fixed Cost
	$(\mathbf{1)}$	(2)	$(\mathbf{3) = (1) \times (2)}$	$\mathbf{(4)}$	$(5)=(3)-(4)$
North	1,100	45%	495	135	$\mathbf{3 6 0}$
East	1,450	60%	870	210	$\mathbf{6 6 0}$
South	1,200	55%	660	330	330
Total	3,750		2,025	675	$\mathbf{1 , 3 5 0}$

(ii) Computation of Break-Even Sales

14. Budget Showing Current Position and Position for 2020-21

	Position for 2019-20			Position for 2020-21			
	A	B	$\begin{aligned} & \text { Total } \\ & (\mathrm{A}+\mathrm{B}) \end{aligned}$	A	B	C	$\begin{gathered} \text { Total } \\ (\mathrm{A}+\mathrm{B}+\mathrm{C}) \end{gathered}$
Sales (units) (A) Sales	$\begin{array}{\|r\|} \hline 2,00,000 \\ (₹) \\ 64,00,000 \end{array}$	$\begin{array}{\|r\|} \hline 1,00,000 \\ (₹) \\ 56,00,000 \end{array}$		$\begin{array}{\|r\|} \hline 1,50,000 \\ (₹) \\ 48,00,000 \end{array}$	$\begin{array}{\|r\|} \hline 50,000 \\ (₹) \\ 28,00,000 \\ \hline \end{array}$	$\begin{array}{\|r\|} \hline 2,00,000 \\ (₹) \\ 56,00,000 \end{array}$	
Direct Material	16,00,000	12,00,000	28,00,000	12,00,000	6,00,000	12,80,000	30,80,000
Direct wages	8,00,000	8,00,000	16,00,000	6,00,000	4,00,000	8,00,000	18,00,000
$\left\lvert\, \begin{array}{ll} \text { Factory } \\ \text { (variable) } \end{array} \quad\right. \text { overhead }$ (variable)	8,00,000	8,00,000	16,00,000	6,00,000	4,00,000	8,00,000	18,00,000
Other variable costs	800,000	4,80,000	12,80,000	6,00,000	240,000	8,00,000	16,40,000
(B) Marginal Cost	40,00,000	32,80,000	72,80,000	30,00,000	16,40,000	36,80,000	83,20,000
(C) Contribution (A B)	24,00,000	23,20,000	47,20,000	18,00,000	11,60,000	19,20,000	48,80,000
Fixed costs							
- Factory			16,00,000				16,00,000
- Others			12,80,000				12,80,000
(D) Total fixed cost			28,80,000				28,80,000
Profit (C - D)			18,40,000				20,00,000

Comments: Introduction of Product C is likely to increase profit by ₹ $1,60,000$ (i.e. from ₹ $18,40,000$ to ₹ $20,00,000$) in 2020-21 as compared to 2019-20 even if the demand for Product A \& B falls. Therefore, introduction of product C is recommended.
15. (a)

S. No.	Cost Control	Cost Reduction
$\mathbf{1}$	Cost control aims at maintaining the costs in in accordance with the established standards.	Cost reduction is concerned with reducing costs. It challenges all standards and endeavours to improvise them continuously.
$\mathbf{2}$	Cost control seeks to attain lowest possible cost under existing conditions.	Cost reduction recognises no condition as permanent, since a change will result in lower cost.
$\mathbf{3}$	In case of cost control, emphasis is on past and present.	In case of cost reduction, it is on present and future.
$\mathbf{4}$	Cost control is a preventive	Cost reduction is a corrective function. It operates even when an efficient cost

	function.	control system exists.
$\mathbf{5}$	Cost control ends when targets are achieved.	Cost reduction has no visible end and is a continuous process.

(b) "Like other branches of accounting, cost accounting also has certain limitations". The limitations of cost accounting are as follows:
(i) Expensive: It is expensive because analysis, allocation and absorption of overheads requires considerable amount of additional work, and hence additional money.
(ii) Requirement of reconciliation: The results shown by cost accounts differ from those shown by financial accounts. Thus, preparation of reconciliation statements is necessary to verify their accuracy.
(iii) Duplication of work: It involves duplication of work as organization has to maintain two sets of accounts i.e. Financial Accounts and Cost Accounts.
(c)

S. No.	Job Costing	Batch Costing
$\mathbf{1}$	Method of costing used for non- standard and non-repetitive products produced as per customer specifications and against specific orders.	Homogeneous products produced in a continuous production flow in lots.
$\mathbf{2}$	Cost determined for each Job.	Cost determined in aggregate for the entire Batch and then arrived at on per unit basis.
$\mathbf{3}$	Jobs are different from each other and independent of each other. Each Job is unique.	Products produced in a batch are homogeneous and lack of individuality.

(d) When the by-products are of small total value, the amount realised from their sale may be dealt in any one the following two ways:
(i) The sales value of the by-products may be credited to the Costing Profit and Loss Account and no credit be given in the Cost Accounts. The credit to the Costing Profit and Loss Account here is treated either as miscellaneous income or as additional sales revenue.
(ii) The sale proceeds of the by-product may be treated as deductions from the total costs. The sale proceeds in fact should be deducted either from the production cost or from the cost of sales.

